{"title":"基于FPGA的煤油凝固点软测量","authors":"R. Caponetto, G. Dongola, A. Gallo, M. Xibilia","doi":"10.1109/SIES.2009.5196219","DOIUrl":null,"url":null,"abstract":"A new strategy to realize an FPGA implementation of a soft sensor for an industrial process is proposed. In order to cope with the problem of small data sets in the identification of a non linear model the proposed approach is based on the integration of bootstrap re-sampling, noise injection and stacked neural networks (NNs), using the Principal Component Analysis (PCA). The aggregated final NN-PCA system has been implemented on Field Programmable Gate Array (FPGA). The proposed method has been applied to develop a soft sensor for the estimation of the freezing point of kerosene in an atmospheric distillation unit (topping) working in a refinery in Sicily, Italy.","PeriodicalId":133325,"journal":{"name":"2009 IEEE International Symposium on Industrial Embedded Systems","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"FPGA based soft sensor for the estimation of the kerosene freezing point\",\"authors\":\"R. Caponetto, G. Dongola, A. Gallo, M. Xibilia\",\"doi\":\"10.1109/SIES.2009.5196219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new strategy to realize an FPGA implementation of a soft sensor for an industrial process is proposed. In order to cope with the problem of small data sets in the identification of a non linear model the proposed approach is based on the integration of bootstrap re-sampling, noise injection and stacked neural networks (NNs), using the Principal Component Analysis (PCA). The aggregated final NN-PCA system has been implemented on Field Programmable Gate Array (FPGA). The proposed method has been applied to develop a soft sensor for the estimation of the freezing point of kerosene in an atmospheric distillation unit (topping) working in a refinery in Sicily, Italy.\",\"PeriodicalId\":133325,\"journal\":{\"name\":\"2009 IEEE International Symposium on Industrial Embedded Systems\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on Industrial Embedded Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIES.2009.5196219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Industrial Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIES.2009.5196219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FPGA based soft sensor for the estimation of the kerosene freezing point
A new strategy to realize an FPGA implementation of a soft sensor for an industrial process is proposed. In order to cope with the problem of small data sets in the identification of a non linear model the proposed approach is based on the integration of bootstrap re-sampling, noise injection and stacked neural networks (NNs), using the Principal Component Analysis (PCA). The aggregated final NN-PCA system has been implemented on Field Programmable Gate Array (FPGA). The proposed method has been applied to develop a soft sensor for the estimation of the freezing point of kerosene in an atmospheric distillation unit (topping) working in a refinery in Sicily, Italy.