实现Kubernetes集群的自动伸缩保证

Stephen Burroughs, Helge Dickel, M. V. Zijl, Vladimir Podolskiy, M. Gerndt, R. Malik, Panos Patros
{"title":"实现Kubernetes集群的自动伸缩保证","authors":"Stephen Burroughs, Helge Dickel, M. V. Zijl, Vladimir Podolskiy, M. Gerndt, R. Malik, Panos Patros","doi":"10.1109/ACSOS-C52956.2021.00073","DOIUrl":null,"url":null,"abstract":"Autoscaling is used by cloud providers, microser-vices, and edge computing applications to respond to dynamic load fluctuations. A critical direction of research has focused on providing guarantees under uncertainty that the auto scaling system will work as intended-both at design-time and more importantly, at runtime. In this work, we evaluate the efficacy of three complementary methods: A) deterministic finite automata, B) probabilistic process algebra and C) Proportional-Integral-Derivative (PID) control. We experimentally evaluate their efficacy in modelling and verify autoscaling on clusters managed by Kubernetes. Our results suggest that deterministic modelling can provide theoretically optimal guarantees for small deployments; probabilistic algebras are able to capture stochastic behaviours, but benefit from deterministic templates; and control theory benefits by providing a black-box approach for modelling, verification and control.","PeriodicalId":268224,"journal":{"name":"2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Towards Autoscaling with Guarantees on Kubernetes Clusters\",\"authors\":\"Stephen Burroughs, Helge Dickel, M. V. Zijl, Vladimir Podolskiy, M. Gerndt, R. Malik, Panos Patros\",\"doi\":\"10.1109/ACSOS-C52956.2021.00073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autoscaling is used by cloud providers, microser-vices, and edge computing applications to respond to dynamic load fluctuations. A critical direction of research has focused on providing guarantees under uncertainty that the auto scaling system will work as intended-both at design-time and more importantly, at runtime. In this work, we evaluate the efficacy of three complementary methods: A) deterministic finite automata, B) probabilistic process algebra and C) Proportional-Integral-Derivative (PID) control. We experimentally evaluate their efficacy in modelling and verify autoscaling on clusters managed by Kubernetes. Our results suggest that deterministic modelling can provide theoretically optimal guarantees for small deployments; probabilistic algebras are able to capture stochastic behaviours, but benefit from deterministic templates; and control theory benefits by providing a black-box approach for modelling, verification and control.\",\"PeriodicalId\":268224,\"journal\":{\"name\":\"2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSOS-C52956.2021.00073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSOS-C52956.2021.00073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

云提供商、微服务和边缘计算应用程序使用自动缩放来响应动态负载波动。一个关键的研究方向是在不确定的情况下保证自动缩放系统在设计时和更重要的是在运行时都能按预期工作。在这项工作中,我们评估了三种互补方法的有效性:A)确定性有限自动机,B)概率过程代数和C)比例积分导数(PID)控制。我们通过实验评估了它们在建模中的有效性,并验证了Kubernetes管理的集群上的自动缩放。我们的研究结果表明,确定性建模可以为小型部署提供理论上的最佳保证;概率代数能够捕捉随机行为,但受益于确定性模板;控制理论的好处在于为建模、验证和控制提供了一种黑盒方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Autoscaling with Guarantees on Kubernetes Clusters
Autoscaling is used by cloud providers, microser-vices, and edge computing applications to respond to dynamic load fluctuations. A critical direction of research has focused on providing guarantees under uncertainty that the auto scaling system will work as intended-both at design-time and more importantly, at runtime. In this work, we evaluate the efficacy of three complementary methods: A) deterministic finite automata, B) probabilistic process algebra and C) Proportional-Integral-Derivative (PID) control. We experimentally evaluate their efficacy in modelling and verify autoscaling on clusters managed by Kubernetes. Our results suggest that deterministic modelling can provide theoretically optimal guarantees for small deployments; probabilistic algebras are able to capture stochastic behaviours, but benefit from deterministic templates; and control theory benefits by providing a black-box approach for modelling, verification and control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信