基于深度神经网络的脂肪肝超声图像分类

Lei Zhang, Haijiang Zhu, Tengfei Yang
{"title":"基于深度神经网络的脂肪肝超声图像分类","authors":"Lei Zhang, Haijiang Zhu, Tengfei Yang","doi":"10.1109/CCDC.2019.8833364","DOIUrl":null,"url":null,"abstract":"Depth learning has been applied extensively in various fields of computer vision in recent year. Although a CNN-based network structure can obtain the ideal results in many image recognition, it is rarely used to classify the ultrasonic images of the fatty liver. This is principally because the fatty liver ultrasonic image has no obvious texture features and the low resolution. In this paper, we design the network structure for the characteristics of B-mode ultrasonic images, and utilize the CNN-based model to classify fatty liver ultrasound images. The experimental results show that we achieve a satisfactory classification effect through applying the proposed CNN network and this method is better than the traditional method for classifying fatty liver ultrasonic images.","PeriodicalId":254705,"journal":{"name":"2019 Chinese Control And Decision Conference (CCDC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Deep Neural Networks for fatty liver ultrasound images classification\",\"authors\":\"Lei Zhang, Haijiang Zhu, Tengfei Yang\",\"doi\":\"10.1109/CCDC.2019.8833364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Depth learning has been applied extensively in various fields of computer vision in recent year. Although a CNN-based network structure can obtain the ideal results in many image recognition, it is rarely used to classify the ultrasonic images of the fatty liver. This is principally because the fatty liver ultrasonic image has no obvious texture features and the low resolution. In this paper, we design the network structure for the characteristics of B-mode ultrasonic images, and utilize the CNN-based model to classify fatty liver ultrasound images. The experimental results show that we achieve a satisfactory classification effect through applying the proposed CNN network and this method is better than the traditional method for classifying fatty liver ultrasonic images.\",\"PeriodicalId\":254705,\"journal\":{\"name\":\"2019 Chinese Control And Decision Conference (CCDC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Chinese Control And Decision Conference (CCDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC.2019.8833364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Chinese Control And Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2019.8833364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

近年来,深度学习在计算机视觉的各个领域得到了广泛的应用。虽然基于cnn的网络结构在许多图像识别中都能获得理想的结果,但很少用于脂肪肝超声图像的分类。这主要是因为脂肪肝超声图像没有明显的纹理特征,分辨率较低。本文针对b型超声图像的特点设计网络结构,利用基于cnn的模型对脂肪肝超声图像进行分类。实验结果表明,我们通过应用所提出的CNN网络取得了满意的分类效果,并且该方法优于传统的脂肪肝超声图像分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Neural Networks for fatty liver ultrasound images classification
Depth learning has been applied extensively in various fields of computer vision in recent year. Although a CNN-based network structure can obtain the ideal results in many image recognition, it is rarely used to classify the ultrasonic images of the fatty liver. This is principally because the fatty liver ultrasonic image has no obvious texture features and the low resolution. In this paper, we design the network structure for the characteristics of B-mode ultrasonic images, and utilize the CNN-based model to classify fatty liver ultrasound images. The experimental results show that we achieve a satisfactory classification effect through applying the proposed CNN network and this method is better than the traditional method for classifying fatty liver ultrasonic images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信