S. Safie, H. Nurfazira, Z. Azavitra, J. Soraghan, L. Petropoulakis
{"title":"脉冲主动变换(PAT):一种应用于心电生物识别认证的非可逆变换","authors":"S. Safie, H. Nurfazira, Z. Azavitra, J. Soraghan, L. Petropoulakis","doi":"10.1109/TENCONSPRING.2014.6863117","DOIUrl":null,"url":null,"abstract":"This paper presents a new transformation technique called the Pulse Active transform (PAT). The PAT uses a series of harmonically related periodic triangular waveforms to decompose a signal into a finite set of pulse active features. These features incorporate the signal's information in the pulse active domain, and which are subsequently processed for some desired application. PAT is non-invertible thus ensuring complete security of the original signal source. In this paper PAT is demonstrated on an ECG signal and used for biometric authentication. The new transformation technique is tested on 112 PTB subjects. It is shown in this paper that the new transformation has a superior performance compared to the conventional characteristic based feature extraction methods with additional security to avoid recovery of the original ECG.","PeriodicalId":270495,"journal":{"name":"2014 IEEE REGION 10 SYMPOSIUM","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Pulse Active Transform (PAT): A non-invertible transformation with application to ECG biometric authentication\",\"authors\":\"S. Safie, H. Nurfazira, Z. Azavitra, J. Soraghan, L. Petropoulakis\",\"doi\":\"10.1109/TENCONSPRING.2014.6863117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new transformation technique called the Pulse Active transform (PAT). The PAT uses a series of harmonically related periodic triangular waveforms to decompose a signal into a finite set of pulse active features. These features incorporate the signal's information in the pulse active domain, and which are subsequently processed for some desired application. PAT is non-invertible thus ensuring complete security of the original signal source. In this paper PAT is demonstrated on an ECG signal and used for biometric authentication. The new transformation technique is tested on 112 PTB subjects. It is shown in this paper that the new transformation has a superior performance compared to the conventional characteristic based feature extraction methods with additional security to avoid recovery of the original ECG.\",\"PeriodicalId\":270495,\"journal\":{\"name\":\"2014 IEEE REGION 10 SYMPOSIUM\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE REGION 10 SYMPOSIUM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCONSPRING.2014.6863117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE REGION 10 SYMPOSIUM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCONSPRING.2014.6863117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pulse Active Transform (PAT): A non-invertible transformation with application to ECG biometric authentication
This paper presents a new transformation technique called the Pulse Active transform (PAT). The PAT uses a series of harmonically related periodic triangular waveforms to decompose a signal into a finite set of pulse active features. These features incorporate the signal's information in the pulse active domain, and which are subsequently processed for some desired application. PAT is non-invertible thus ensuring complete security of the original signal source. In this paper PAT is demonstrated on an ECG signal and used for biometric authentication. The new transformation technique is tested on 112 PTB subjects. It is shown in this paper that the new transformation has a superior performance compared to the conventional characteristic based feature extraction methods with additional security to avoid recovery of the original ECG.