基于Twitter数据的covid-19疫苗情绪分析:一种NLP方法

Kainat Khan, Sachin Yadav
{"title":"基于Twitter数据的covid-19疫苗情绪分析:一种NLP方法","authors":"Kainat Khan, Sachin Yadav","doi":"10.1109/R10-HTC53172.2021.9641515","DOIUrl":null,"url":null,"abstract":"Sentiment analysis is the process of mining the perception of people towards a service, product, policy or imminent issue from textual data. In this project, tweets relevant to Covid-19 Vaccine are extracted utilizing the Tweepy library. Next, tweet texts are converted into usable form in order to do sentiment analysis. After this, SentiWordNet lexicon is used to label the sentiment of the tweets. Stop words removal, Lemmatizing, stemming operations are also applied on the COVID-19 Vaccine tweets text data. Count Vectorizer and Tfidf Vectorizer are applied for mathematical conversion of the preprocessed text. Then, nine classification techniques namely - Multinomial-NB, Bernoulli-NB, Logistic-Regression, Ridge Classifier, Passive-Aggressive-Classifier, Perceptron, Random Forest classifier, AdaBoostClassifier and Linear SVM are applied on the dataset obtained for sentiment classification and results are obtained in terms of accuracy. The best cross validation test score obtained is 0.785 with Logistic Regression Classifier and TfidfVectorizer.","PeriodicalId":117626,"journal":{"name":"2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sentiment analysis on covid-19 vaccine using Twitter data: A NLP approach\",\"authors\":\"Kainat Khan, Sachin Yadav\",\"doi\":\"10.1109/R10-HTC53172.2021.9641515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentiment analysis is the process of mining the perception of people towards a service, product, policy or imminent issue from textual data. In this project, tweets relevant to Covid-19 Vaccine are extracted utilizing the Tweepy library. Next, tweet texts are converted into usable form in order to do sentiment analysis. After this, SentiWordNet lexicon is used to label the sentiment of the tweets. Stop words removal, Lemmatizing, stemming operations are also applied on the COVID-19 Vaccine tweets text data. Count Vectorizer and Tfidf Vectorizer are applied for mathematical conversion of the preprocessed text. Then, nine classification techniques namely - Multinomial-NB, Bernoulli-NB, Logistic-Regression, Ridge Classifier, Passive-Aggressive-Classifier, Perceptron, Random Forest classifier, AdaBoostClassifier and Linear SVM are applied on the dataset obtained for sentiment classification and results are obtained in terms of accuracy. The best cross validation test score obtained is 0.785 with Logistic Regression Classifier and TfidfVectorizer.\",\"PeriodicalId\":117626,\"journal\":{\"name\":\"2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/R10-HTC53172.2021.9641515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/R10-HTC53172.2021.9641515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

情感分析是从文本数据中挖掘人们对服务、产品、政策或迫在眉睫的问题的看法的过程。在这个项目中,利用Tweepy库提取与Covid-19疫苗相关的推文。接下来,将tweet文本转换为可用形式,以便进行情感分析。在此之后,使用SentiWordNet词典来标记推文的情绪。对COVID-19疫苗推文文本数据也应用了停止词删除、词法化和词干化操作。采用计数矢量器和Tfidf矢量器对预处理后的文本进行数学转换。然后,将多项式- nb、伯oulli- nb、Logistic-Regression、Ridge Classifier、Passive-Aggressive-Classifier、Perceptron、Random Forest Classifier、AdaBoostClassifier和线性支持向量机(Linear SVM) 9种分类技术应用于所获得的数据集进行情感分类,并获得准确率方面的结果。使用Logistic回归分类器和TfidfVectorizer得到的最佳交叉验证检验分数为0.785。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentiment analysis on covid-19 vaccine using Twitter data: A NLP approach
Sentiment analysis is the process of mining the perception of people towards a service, product, policy or imminent issue from textual data. In this project, tweets relevant to Covid-19 Vaccine are extracted utilizing the Tweepy library. Next, tweet texts are converted into usable form in order to do sentiment analysis. After this, SentiWordNet lexicon is used to label the sentiment of the tweets. Stop words removal, Lemmatizing, stemming operations are also applied on the COVID-19 Vaccine tweets text data. Count Vectorizer and Tfidf Vectorizer are applied for mathematical conversion of the preprocessed text. Then, nine classification techniques namely - Multinomial-NB, Bernoulli-NB, Logistic-Regression, Ridge Classifier, Passive-Aggressive-Classifier, Perceptron, Random Forest classifier, AdaBoostClassifier and Linear SVM are applied on the dataset obtained for sentiment classification and results are obtained in terms of accuracy. The best cross validation test score obtained is 0.785 with Logistic Regression Classifier and TfidfVectorizer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信