分层聚类算法中的聚类合并与分裂

C. Ding, Xiaofeng He
{"title":"分层聚类算法中的聚类合并与分裂","authors":"C. Ding, Xiaofeng He","doi":"10.1109/ICDM.2002.1183896","DOIUrl":null,"url":null,"abstract":"Hierarchical clustering constructs a hierarchy of clusters by either repeatedly merging two smaller clusters into a larger one or splitting a larger cluster into smaller ones. The crucial step is how to best select the next cluster(s) to split or merge. We provide a comprehensive analysis of selection methods and propose several new methods. We perform extensive clustering experiments to test 8 selection methods, and find that the average similarity is the best method in divisive clustering and the minmax linkage is the best in agglomerative clustering. Cluster balance is a key factor to achieve good performance. We also introduce the concept of objective function saturation and clustering target distance to effectively assess the quality of clustering.","PeriodicalId":405340,"journal":{"name":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"183","resultStr":"{\"title\":\"Cluster merging and splitting in hierarchical clustering algorithms\",\"authors\":\"C. Ding, Xiaofeng He\",\"doi\":\"10.1109/ICDM.2002.1183896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hierarchical clustering constructs a hierarchy of clusters by either repeatedly merging two smaller clusters into a larger one or splitting a larger cluster into smaller ones. The crucial step is how to best select the next cluster(s) to split or merge. We provide a comprehensive analysis of selection methods and propose several new methods. We perform extensive clustering experiments to test 8 selection methods, and find that the average similarity is the best method in divisive clustering and the minmax linkage is the best in agglomerative clustering. Cluster balance is a key factor to achieve good performance. We also introduce the concept of objective function saturation and clustering target distance to effectively assess the quality of clustering.\",\"PeriodicalId\":405340,\"journal\":{\"name\":\"2002 IEEE International Conference on Data Mining, 2002. Proceedings.\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"183\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 IEEE International Conference on Data Mining, 2002. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2002.1183896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2002.1183896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 183

摘要

分层聚类通过将两个较小的集群重复合并为较大的集群或将较大的集群拆分为较小的集群来构建集群的层次结构。关键的一步是如何最好地选择要拆分或合并的下一个集群。我们对选择方法进行了全面的分析,并提出了几种新的方法。我们对8种选择方法进行了广泛的聚类实验,发现平均相似度是分裂聚类的最佳选择方法,最小最大连接是聚集聚类的最佳选择方法。集群平衡是实现良好性能的关键因素。引入目标函数饱和度和聚类目标距离的概念,有效地评价聚类质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cluster merging and splitting in hierarchical clustering algorithms
Hierarchical clustering constructs a hierarchy of clusters by either repeatedly merging two smaller clusters into a larger one or splitting a larger cluster into smaller ones. The crucial step is how to best select the next cluster(s) to split or merge. We provide a comprehensive analysis of selection methods and propose several new methods. We perform extensive clustering experiments to test 8 selection methods, and find that the average similarity is the best method in divisive clustering and the minmax linkage is the best in agglomerative clustering. Cluster balance is a key factor to achieve good performance. We also introduce the concept of objective function saturation and clustering target distance to effectively assess the quality of clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信