P. Spinicelli, B. Mahler, S. Buil, X. Quélin, B. Dubertret, J. Hermier
{"title":"胶体核壳量子点的量子工程:迈向非闪烁量子点和双激子发射","authors":"P. Spinicelli, B. Mahler, S. Buil, X. Quélin, B. Dubertret, J. Hermier","doi":"10.1109/CLEOE-EQEC.2009.5191473","DOIUrl":null,"url":null,"abstract":"Fluorescence spectroscopy studies have shown that, at a single molecule level, fluorophore emission intensity fluctuates between bright and dark states. These fluctuations, known as blinking, are the main drawback of fluorophores in single molecule experiments. Statistical analysis of these intensity fluctuations have demonstrated that the dark states duration exhibits a universal heavy-tailed power law distribution in organic as well as inorganic fluorophores. However, the precise reasons underlying the blinking of single fluorophores are still matter of debate and whether it can be suppressed is not clear.","PeriodicalId":346720,"journal":{"name":"CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum engineering of colloidal core-shell quantum dots: towards non blinking quantum dots and biexcitonic emission\",\"authors\":\"P. Spinicelli, B. Mahler, S. Buil, X. Quélin, B. Dubertret, J. Hermier\",\"doi\":\"10.1109/CLEOE-EQEC.2009.5191473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fluorescence spectroscopy studies have shown that, at a single molecule level, fluorophore emission intensity fluctuates between bright and dark states. These fluctuations, known as blinking, are the main drawback of fluorophores in single molecule experiments. Statistical analysis of these intensity fluctuations have demonstrated that the dark states duration exhibits a universal heavy-tailed power law distribution in organic as well as inorganic fluorophores. However, the precise reasons underlying the blinking of single fluorophores are still matter of debate and whether it can be suppressed is not clear.\",\"PeriodicalId\":346720,\"journal\":{\"name\":\"CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLEOE-EQEC.2009.5191473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOE-EQEC.2009.5191473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantum engineering of colloidal core-shell quantum dots: towards non blinking quantum dots and biexcitonic emission
Fluorescence spectroscopy studies have shown that, at a single molecule level, fluorophore emission intensity fluctuates between bright and dark states. These fluctuations, known as blinking, are the main drawback of fluorophores in single molecule experiments. Statistical analysis of these intensity fluctuations have demonstrated that the dark states duration exhibits a universal heavy-tailed power law distribution in organic as well as inorganic fluorophores. However, the precise reasons underlying the blinking of single fluorophores are still matter of debate and whether it can be suppressed is not clear.