机器调谐机器:配置分布式流处理器与贝叶斯优化

Lorenz Fischer, Shen Gao, A. Bernstein
{"title":"机器调谐机器:配置分布式流处理器与贝叶斯优化","authors":"Lorenz Fischer, Shen Gao, A. Bernstein","doi":"10.1109/CLUSTER.2015.13","DOIUrl":null,"url":null,"abstract":"Modern distributed computing frameworks such as Apache Hadoop, Spark, or Storm distribute the workload of applications across a large number of machines. Whilst they abstract the details of distribution they do require the programmer to set a number of configuration parameters before deployment. These parameter settings (usually) have a substantial impact on execution efficiency. Finding the right values for these parameters is considered a difficult task and requires domain, application, and framework expertise. In this paper, we propose a machine learning approach to the problem of configuring a distributed computing framework. Specifically, we propose using Bayesian Optimization to find good parameter settings. In an extensive empirical evaluation, we show that Bayesian Optimization can effectively find good parameter settings for four different stream processing topologies implemented in Apache Storm resulting in significant gains over a parallel linear approach.","PeriodicalId":187042,"journal":{"name":"2015 IEEE International Conference on Cluster Computing","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Machines Tuning Machines: Configuring Distributed Stream Processors with Bayesian Optimization\",\"authors\":\"Lorenz Fischer, Shen Gao, A. Bernstein\",\"doi\":\"10.1109/CLUSTER.2015.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern distributed computing frameworks such as Apache Hadoop, Spark, or Storm distribute the workload of applications across a large number of machines. Whilst they abstract the details of distribution they do require the programmer to set a number of configuration parameters before deployment. These parameter settings (usually) have a substantial impact on execution efficiency. Finding the right values for these parameters is considered a difficult task and requires domain, application, and framework expertise. In this paper, we propose a machine learning approach to the problem of configuring a distributed computing framework. Specifically, we propose using Bayesian Optimization to find good parameter settings. In an extensive empirical evaluation, we show that Bayesian Optimization can effectively find good parameter settings for four different stream processing topologies implemented in Apache Storm resulting in significant gains over a parallel linear approach.\",\"PeriodicalId\":187042,\"journal\":{\"name\":\"2015 IEEE International Conference on Cluster Computing\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLUSTER.2015.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTER.2015.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

现代分布式计算框架(如Apache Hadoop、Spark或Storm)将应用程序的工作负载分布在大量机器上。虽然它们抽象了分布的细节,但它们确实要求程序员在部署前设置一些配置参数。这些参数设置(通常)对执行效率有很大的影响。为这些参数找到正确的值被认为是一项艰巨的任务,需要领域、应用程序和框架方面的专业知识。在本文中,我们提出了一种机器学习方法来解决配置分布式计算框架的问题。具体来说,我们建议使用贝叶斯优化来找到良好的参数设置。在广泛的经验评估中,我们表明贝叶斯优化可以有效地为Apache Storm中实现的四种不同的流处理拓扑找到良好的参数设置,从而比并行线性方法获得显着收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machines Tuning Machines: Configuring Distributed Stream Processors with Bayesian Optimization
Modern distributed computing frameworks such as Apache Hadoop, Spark, or Storm distribute the workload of applications across a large number of machines. Whilst they abstract the details of distribution they do require the programmer to set a number of configuration parameters before deployment. These parameter settings (usually) have a substantial impact on execution efficiency. Finding the right values for these parameters is considered a difficult task and requires domain, application, and framework expertise. In this paper, we propose a machine learning approach to the problem of configuring a distributed computing framework. Specifically, we propose using Bayesian Optimization to find good parameter settings. In an extensive empirical evaluation, we show that Bayesian Optimization can effectively find good parameter settings for four different stream processing topologies implemented in Apache Storm resulting in significant gains over a parallel linear approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信