空间面板计数数据:城市犯罪的建模与预测

S. Glaser, Robert C. Jung, Karsten Schweikert
{"title":"空间面板计数数据:城市犯罪的建模与预测","authors":"S. Glaser, Robert C. Jung, Karsten Schweikert","doi":"10.2139/ssrn.3701642","DOIUrl":null,"url":null,"abstract":"The steadily growing access to high-quality spatio-temporal crime count data with a high level of spatial detail allows to uncover interesting relationships between crime types within and between small regional units. Data coherent forecasting of such counts has to take the integer and non-negative nature of the data into account. Spatial panel data models that meet the criterion of coherency are relatively sparse. This paper proposes a new spatial panel regression framework with fixed effects to overcome these shortcomings. Depending on whether time dynamic effects are included in the model specification, estimation and inference are based either on a pseudo maximum likelihood method or on quasi-differenced generalized methods of moments. The models’ usefulness is demonstrated in a forecasting exercise of monthly crime counts at census tract level from Pittsburgh, Pennsylvania.","PeriodicalId":237473,"journal":{"name":"Journal of Spatial Econometrics","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Spatial panel count data: modeling and forecasting of urban crimes\",\"authors\":\"S. Glaser, Robert C. Jung, Karsten Schweikert\",\"doi\":\"10.2139/ssrn.3701642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The steadily growing access to high-quality spatio-temporal crime count data with a high level of spatial detail allows to uncover interesting relationships between crime types within and between small regional units. Data coherent forecasting of such counts has to take the integer and non-negative nature of the data into account. Spatial panel data models that meet the criterion of coherency are relatively sparse. This paper proposes a new spatial panel regression framework with fixed effects to overcome these shortcomings. Depending on whether time dynamic effects are included in the model specification, estimation and inference are based either on a pseudo maximum likelihood method or on quasi-differenced generalized methods of moments. The models’ usefulness is demonstrated in a forecasting exercise of monthly crime counts at census tract level from Pittsburgh, Pennsylvania.\",\"PeriodicalId\":237473,\"journal\":{\"name\":\"Journal of Spatial Econometrics\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spatial Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3701642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spatial Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3701642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对高质量的时空犯罪统计数据的访问不断增加,具有高水平的空间细节,可以揭示小区域单位内部和之间犯罪类型之间的有趣关系。这种计数的数据一致性预测必须考虑到数据的整数和非负性质。满足相干准则的空间面板数据模型是相对稀疏的。本文提出了一种新的具有固定效应的空间面板回归框架来克服这些缺点。根据模型规范中是否包含时间动态效应,估计和推断要么基于伪极大似然方法,要么基于准差分广义矩方法。这些模型的实用性在宾夕法尼亚州匹兹堡市人口普查区每月犯罪数量的预测中得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial panel count data: modeling and forecasting of urban crimes
The steadily growing access to high-quality spatio-temporal crime count data with a high level of spatial detail allows to uncover interesting relationships between crime types within and between small regional units. Data coherent forecasting of such counts has to take the integer and non-negative nature of the data into account. Spatial panel data models that meet the criterion of coherency are relatively sparse. This paper proposes a new spatial panel regression framework with fixed effects to overcome these shortcomings. Depending on whether time dynamic effects are included in the model specification, estimation and inference are based either on a pseudo maximum likelihood method or on quasi-differenced generalized methods of moments. The models’ usefulness is demonstrated in a forecasting exercise of monthly crime counts at census tract level from Pittsburgh, Pennsylvania.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信