基于深度学习的真实网络视频人脸识别

Z. Li, Y. Tie, L. Qi
{"title":"基于深度学习的真实网络视频人脸识别","authors":"Z. Li, Y. Tie, L. Qi","doi":"10.1109/ISNE.2019.8896630","DOIUrl":null,"url":null,"abstract":"Though current face recognition systems perform well in relatively constrained scenes, they are often affected by secondary creation of netizens, serious image blurring and abundant posture changes in real-world Internet videos. Focusing on these problems, we propose a face recognition model names Internet Video-based Face Recognition Network (IVFRNet) based on deep learning for real Internet videos. And we propose a weighted loss function to enhance the ability of learned features. To test the model, we construct a small-scale real-world Internet video-based face dataset. The experiment results show that our method outperforms the origin method.","PeriodicalId":405565,"journal":{"name":"2019 8th International Symposium on Next Generation Electronics (ISNE)","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Face Recognition in Real-world Internet Videos Based on Deep Learning\",\"authors\":\"Z. Li, Y. Tie, L. Qi\",\"doi\":\"10.1109/ISNE.2019.8896630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Though current face recognition systems perform well in relatively constrained scenes, they are often affected by secondary creation of netizens, serious image blurring and abundant posture changes in real-world Internet videos. Focusing on these problems, we propose a face recognition model names Internet Video-based Face Recognition Network (IVFRNet) based on deep learning for real Internet videos. And we propose a weighted loss function to enhance the ability of learned features. To test the model, we construct a small-scale real-world Internet video-based face dataset. The experiment results show that our method outperforms the origin method.\",\"PeriodicalId\":405565,\"journal\":{\"name\":\"2019 8th International Symposium on Next Generation Electronics (ISNE)\",\"volume\":\"160 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 8th International Symposium on Next Generation Electronics (ISNE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISNE.2019.8896630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Symposium on Next Generation Electronics (ISNE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISNE.2019.8896630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

虽然目前的人脸识别系统在相对受限的场景中表现良好,但在现实网络视频中,往往会受到网民二次创作、严重的图像模糊和丰富的姿态变化的影响。针对这些问题,我们提出了一种基于深度学习的真实互联网视频人脸识别模型——基于互联网视频的人脸识别网络(IVFRNet)。我们提出了一个加权损失函数来增强学习特征的能力。为了测试该模型,我们构建了一个小规模的基于真实世界互联网视频的人脸数据集。实验结果表明,该方法优于原始方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face Recognition in Real-world Internet Videos Based on Deep Learning
Though current face recognition systems perform well in relatively constrained scenes, they are often affected by secondary creation of netizens, serious image blurring and abundant posture changes in real-world Internet videos. Focusing on these problems, we propose a face recognition model names Internet Video-based Face Recognition Network (IVFRNet) based on deep learning for real Internet videos. And we propose a weighted loss function to enhance the ability of learned features. To test the model, we construct a small-scale real-world Internet video-based face dataset. The experiment results show that our method outperforms the origin method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信