{"title":"亚vt电路双vt门的尺寸","authors":"B. Mohammadi, S. M. Y. Sherazi, J. Rodrigues","doi":"10.1109/SUBVT.2012.6404305","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method to improve the performance of sub-threshold (sub-VT) gates in 65-nm CMOS technology. Faster transistors with a lower threshold voltage are introduced in the weaker network of a gate. It is shown that the employed method significantly enhances the reliability and performance of the gate, with an additive advantage of a lower area cost compared to traditional transistor sizing. Extensive Monte-Carlo simulations are carried out to verify the proposed optimization technique. The simulation results predict that the NAND3 and NOR3 testbench shows a 98% higher noise margin. Furthermore, the inverter and NAND3 gates show an speed improvement of 48% and 97%, respectively.","PeriodicalId":383826,"journal":{"name":"2012 IEEE Subthreshold Microelectronics Conference (SubVT)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Sizing of dual-VT gates for sub-VT circuits\",\"authors\":\"B. Mohammadi, S. M. Y. Sherazi, J. Rodrigues\",\"doi\":\"10.1109/SUBVT.2012.6404305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel method to improve the performance of sub-threshold (sub-VT) gates in 65-nm CMOS technology. Faster transistors with a lower threshold voltage are introduced in the weaker network of a gate. It is shown that the employed method significantly enhances the reliability and performance of the gate, with an additive advantage of a lower area cost compared to traditional transistor sizing. Extensive Monte-Carlo simulations are carried out to verify the proposed optimization technique. The simulation results predict that the NAND3 and NOR3 testbench shows a 98% higher noise margin. Furthermore, the inverter and NAND3 gates show an speed improvement of 48% and 97%, respectively.\",\"PeriodicalId\":383826,\"journal\":{\"name\":\"2012 IEEE Subthreshold Microelectronics Conference (SubVT)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Subthreshold Microelectronics Conference (SubVT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SUBVT.2012.6404305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Subthreshold Microelectronics Conference (SubVT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SUBVT.2012.6404305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents a novel method to improve the performance of sub-threshold (sub-VT) gates in 65-nm CMOS technology. Faster transistors with a lower threshold voltage are introduced in the weaker network of a gate. It is shown that the employed method significantly enhances the reliability and performance of the gate, with an additive advantage of a lower area cost compared to traditional transistor sizing. Extensive Monte-Carlo simulations are carried out to verify the proposed optimization technique. The simulation results predict that the NAND3 and NOR3 testbench shows a 98% higher noise margin. Furthermore, the inverter and NAND3 gates show an speed improvement of 48% and 97%, respectively.