Flávio Brito, Lucas Silva, Leonardo Ramalho, Silvia Lins, Neiva Linder, A. Klautau
{"title":"分裂深度神经网络激活信号的压缩","authors":"Flávio Brito, Lucas Silva, Leonardo Ramalho, Silvia Lins, Neiva Linder, A. Klautau","doi":"10.1109/LATINCOM56090.2022.10000526","DOIUrl":null,"url":null,"abstract":"The use of artificial neural networks for the purpose of image classification, together with the advancement in computational capabilities of edge devices, plays an important role in the new emerging 5G use case scenarios. However, one of the main challenges of applications involving the use of these networks in edge devices is still the limitation of computational resources. An alternative for saving resources and promoting privacy are the split learning (or split inference) techniques, in which a deep neural network is cut into two parts and executed in distinct devices. Most of these techniques rely on sending the activation signals (output of the cut layer) through the communication channel. This work proposes a new compression algorithm for decreasing the bit rate required for the transmission of the activation signals (or simply “scores”). The presented results demonstrate that the transmission rate can be decreased without hurting the neural network accuracy.","PeriodicalId":221354,"journal":{"name":"2022 IEEE Latin-American Conference on Communications (LATINCOM)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compression of Activation Signals from Split Deep Neural Network\",\"authors\":\"Flávio Brito, Lucas Silva, Leonardo Ramalho, Silvia Lins, Neiva Linder, A. Klautau\",\"doi\":\"10.1109/LATINCOM56090.2022.10000526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of artificial neural networks for the purpose of image classification, together with the advancement in computational capabilities of edge devices, plays an important role in the new emerging 5G use case scenarios. However, one of the main challenges of applications involving the use of these networks in edge devices is still the limitation of computational resources. An alternative for saving resources and promoting privacy are the split learning (or split inference) techniques, in which a deep neural network is cut into two parts and executed in distinct devices. Most of these techniques rely on sending the activation signals (output of the cut layer) through the communication channel. This work proposes a new compression algorithm for decreasing the bit rate required for the transmission of the activation signals (or simply “scores”). The presented results demonstrate that the transmission rate can be decreased without hurting the neural network accuracy.\",\"PeriodicalId\":221354,\"journal\":{\"name\":\"2022 IEEE Latin-American Conference on Communications (LATINCOM)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Latin-American Conference on Communications (LATINCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LATINCOM56090.2022.10000526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Latin-American Conference on Communications (LATINCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LATINCOM56090.2022.10000526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compression of Activation Signals from Split Deep Neural Network
The use of artificial neural networks for the purpose of image classification, together with the advancement in computational capabilities of edge devices, plays an important role in the new emerging 5G use case scenarios. However, one of the main challenges of applications involving the use of these networks in edge devices is still the limitation of computational resources. An alternative for saving resources and promoting privacy are the split learning (or split inference) techniques, in which a deep neural network is cut into two parts and executed in distinct devices. Most of these techniques rely on sending the activation signals (output of the cut layer) through the communication channel. This work proposes a new compression algorithm for decreasing the bit rate required for the transmission of the activation signals (or simply “scores”). The presented results demonstrate that the transmission rate can be decreased without hurting the neural network accuracy.