具有Hermite项的大Wishart矩阵的非中心极限定理

Charles-Philippe Diez, C. Tudor
{"title":"具有Hermite项的大Wishart矩阵的非中心极限定理","authors":"Charles-Philippe Diez, C. Tudor","doi":"10.31390/JOSA.2.1.02","DOIUrl":null,"url":null,"abstract":". We analyze the limit behavior of the Wishart matrix W n,d = X n,d X Tn,d constructed from an n × d random matrix X n,d whose entries are given by the increments of the Hermite process. These entries are correlated on the same row, independent from one row to another and their probability distribution is di ff erent on di ff erent rows. We prove that the Wishart matrix converges in law, as d → ∞ , to a diagonal random matrix whose diagonal elements are random variables in the second Wiener chaos. We also estimate the Wasserstein distance associated to this convergence.","PeriodicalId":263604,"journal":{"name":"Journal of Stochastic Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Noncentral Limit Theorem for Large Wishart Matrices with Hermite Entries\",\"authors\":\"Charles-Philippe Diez, C. Tudor\",\"doi\":\"10.31390/JOSA.2.1.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We analyze the limit behavior of the Wishart matrix W n,d = X n,d X Tn,d constructed from an n × d random matrix X n,d whose entries are given by the increments of the Hermite process. These entries are correlated on the same row, independent from one row to another and their probability distribution is di ff erent on di ff erent rows. We prove that the Wishart matrix converges in law, as d → ∞ , to a diagonal random matrix whose diagonal elements are random variables in the second Wiener chaos. We also estimate the Wasserstein distance associated to this convergence.\",\"PeriodicalId\":263604,\"journal\":{\"name\":\"Journal of Stochastic Analysis\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Stochastic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31390/JOSA.2.1.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31390/JOSA.2.1.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

. 本文分析了由n × d随机矩阵X n,d构造的Wishart矩阵W n,d = X n,d X Tn,d的极限行为,该随机矩阵X n,d的项由Hermite过程的增量给出。这些项在同一行上是相关的,从一行到另一行是独立的,它们的概率分布在不同的行上是不同的。在第二次Wiener混沌中,我们证明了Wishart矩阵在d→∞时收敛于一个对角元为随机变量的对角随机矩阵。我们还估计了与此收敛相关的Wasserstein距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noncentral Limit Theorem for Large Wishart Matrices with Hermite Entries
. We analyze the limit behavior of the Wishart matrix W n,d = X n,d X Tn,d constructed from an n × d random matrix X n,d whose entries are given by the increments of the Hermite process. These entries are correlated on the same row, independent from one row to another and their probability distribution is di ff erent on di ff erent rows. We prove that the Wishart matrix converges in law, as d → ∞ , to a diagonal random matrix whose diagonal elements are random variables in the second Wiener chaos. We also estimate the Wasserstein distance associated to this convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信