表格数据的AutoML超参数优化工具比较

Prativa Pokhrel, A. Lazar
{"title":"表格数据的AutoML超参数优化工具比较","authors":"Prativa Pokhrel, A. Lazar","doi":"10.32473/flairs.36.133357","DOIUrl":null,"url":null,"abstract":"The performance of machine learning (ML) methods for classification and regression tasks applied to tabular datasets is sensitive to hyperparameters values. Therefore, finding the optimal values of these hyperparameters is integral in improving the prediction accuracy of an ML algorithm and the model selection. However, manually searching for the best configuration is a tedious task, and many AutoML (Automated Machine Learning) frameworks have been proposed recently to help practitioners solve this problem. Hyperparameters are the values or configurations that control the algorithm’s behavior while building the model. Hyperparameter optimization (HPO) is the guided process of finding the best combination of hyperparameters that delivers the best performance on the data and task at hand in a reasonable amount of time. In this work, we compare the performance of two frequently used AutoML HPO frameworks, Optuna and HyperOpt, on popular OpenML tabular datasets to identify the best framework for tabular data. The results of the experiments show that Optuna performs better than HyperOpt, whereas HyperOpt is the fastest for hyperparameter optimization.","PeriodicalId":302103,"journal":{"name":"The International FLAIRS Conference Proceedings","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparison of AutoML Hyperparameter Optimization Tools For Tabular Data\",\"authors\":\"Prativa Pokhrel, A. Lazar\",\"doi\":\"10.32473/flairs.36.133357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of machine learning (ML) methods for classification and regression tasks applied to tabular datasets is sensitive to hyperparameters values. Therefore, finding the optimal values of these hyperparameters is integral in improving the prediction accuracy of an ML algorithm and the model selection. However, manually searching for the best configuration is a tedious task, and many AutoML (Automated Machine Learning) frameworks have been proposed recently to help practitioners solve this problem. Hyperparameters are the values or configurations that control the algorithm’s behavior while building the model. Hyperparameter optimization (HPO) is the guided process of finding the best combination of hyperparameters that delivers the best performance on the data and task at hand in a reasonable amount of time. In this work, we compare the performance of two frequently used AutoML HPO frameworks, Optuna and HyperOpt, on popular OpenML tabular datasets to identify the best framework for tabular data. The results of the experiments show that Optuna performs better than HyperOpt, whereas HyperOpt is the fastest for hyperparameter optimization.\",\"PeriodicalId\":302103,\"journal\":{\"name\":\"The International FLAIRS Conference Proceedings\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International FLAIRS Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32473/flairs.36.133357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International FLAIRS Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32473/flairs.36.133357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

应用于表格数据集的分类和回归任务的机器学习(ML)方法的性能对超参数值敏感。因此,找到这些超参数的最优值对于提高ML算法的预测精度和模型选择是不可或缺的。然而,手动搜索最佳配置是一项乏味的任务,最近提出了许多AutoML(自动机器学习)框架来帮助从业者解决这个问题。超参数是在构建模型时控制算法行为的值或配置。超参数优化(HPO)是找到超参数的最佳组合的指导过程,这些超参数可以在合理的时间内为手头的数据和任务提供最佳性能。在这项工作中,我们比较了两种常用的AutoML HPO框架Optuna和HyperOpt在流行的OpenML表格数据集上的性能,以确定表格数据的最佳框架。实验结果表明,Optuna的性能优于HyperOpt,而HyperOpt的超参数优化速度最快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparison of AutoML Hyperparameter Optimization Tools For Tabular Data
The performance of machine learning (ML) methods for classification and regression tasks applied to tabular datasets is sensitive to hyperparameters values. Therefore, finding the optimal values of these hyperparameters is integral in improving the prediction accuracy of an ML algorithm and the model selection. However, manually searching for the best configuration is a tedious task, and many AutoML (Automated Machine Learning) frameworks have been proposed recently to help practitioners solve this problem. Hyperparameters are the values or configurations that control the algorithm’s behavior while building the model. Hyperparameter optimization (HPO) is the guided process of finding the best combination of hyperparameters that delivers the best performance on the data and task at hand in a reasonable amount of time. In this work, we compare the performance of two frequently used AutoML HPO frameworks, Optuna and HyperOpt, on popular OpenML tabular datasets to identify the best framework for tabular data. The results of the experiments show that Optuna performs better than HyperOpt, whereas HyperOpt is the fastest for hyperparameter optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信