短期电价预测

A. Arabali, E. Chalko, M. Etezadi-Amoli, M. Fadali
{"title":"短期电价预测","authors":"A. Arabali, E. Chalko, M. Etezadi-Amoli, M. Fadali","doi":"10.1109/PESMG.2013.6672910","DOIUrl":null,"url":null,"abstract":"Price forecasting has become an important tool in the planning and operation of restructured power systems. This paper develops a new short-term electricity price forecasting scheme based on a state space model of the power market. A Gauss-Markov process is used to represent the stochastic dynamics of the electricity market. Kalman and H∞ filters, two methods based on the state space model, are applied in order to estimate the electricity price and compare the quality of their state estimates. Our results show that performance measures for the H∞ filter are generally superior to those for the standard Kalman filter.","PeriodicalId":433870,"journal":{"name":"2013 IEEE Power & Energy Society General Meeting","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Short-term electricity price forecasting\",\"authors\":\"A. Arabali, E. Chalko, M. Etezadi-Amoli, M. Fadali\",\"doi\":\"10.1109/PESMG.2013.6672910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Price forecasting has become an important tool in the planning and operation of restructured power systems. This paper develops a new short-term electricity price forecasting scheme based on a state space model of the power market. A Gauss-Markov process is used to represent the stochastic dynamics of the electricity market. Kalman and H∞ filters, two methods based on the state space model, are applied in order to estimate the electricity price and compare the quality of their state estimates. Our results show that performance measures for the H∞ filter are generally superior to those for the standard Kalman filter.\",\"PeriodicalId\":433870,\"journal\":{\"name\":\"2013 IEEE Power & Energy Society General Meeting\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Power & Energy Society General Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PESMG.2013.6672910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Power & Energy Society General Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESMG.2013.6672910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

电价预测已成为电力系统改制后规划和运行的重要工具。本文提出了一种基于电力市场状态空间模型的短期电价预测方案。采用高斯-马尔可夫过程来表示电力市场的随机动力学。采用基于状态空间模型的卡尔曼滤波和H∞滤波两种方法对电价进行估计,并比较其状态估计的质量。结果表明,H∞滤波器的性能指标总体上优于标准卡尔曼滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-term electricity price forecasting
Price forecasting has become an important tool in the planning and operation of restructured power systems. This paper develops a new short-term electricity price forecasting scheme based on a state space model of the power market. A Gauss-Markov process is used to represent the stochastic dynamics of the electricity market. Kalman and H∞ filters, two methods based on the state space model, are applied in order to estimate the electricity price and compare the quality of their state estimates. Our results show that performance measures for the H∞ filter are generally superior to those for the standard Kalman filter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信