单侧一维分数扩散算子的分析

Yulong Li, A. Telyakovskiy, E. Celik
{"title":"单侧一维分数扩散算子的分析","authors":"Yulong Li, A. Telyakovskiy, E. Celik","doi":"10.3934/cpaa.2022039","DOIUrl":null,"url":null,"abstract":"This work establishes the parallel between the properties of classic elliptic PDEs and the one-sided 1-D fractional diffusion equation, that includes the characterization of fractional Sobolev spaces in terms of fractional Riemann-Liouville (R-L) derivatives, variational formulation, maximum principle, Hopf's Lemma, spectral analysis, and theory on the principal eigenvalue and its characterization, etc. As an application, the developed results provide a novel perspective to study the distribution of complex roots of a class of Mittag-Leffler functions and, furthermore, prove the existence of real roots.","PeriodicalId":435074,"journal":{"name":"Communications on Pure & Applied Analysis","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Analysis of one-sided 1-D fractional diffusion operator\",\"authors\":\"Yulong Li, A. Telyakovskiy, E. Celik\",\"doi\":\"10.3934/cpaa.2022039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work establishes the parallel between the properties of classic elliptic PDEs and the one-sided 1-D fractional diffusion equation, that includes the characterization of fractional Sobolev spaces in terms of fractional Riemann-Liouville (R-L) derivatives, variational formulation, maximum principle, Hopf's Lemma, spectral analysis, and theory on the principal eigenvalue and its characterization, etc. As an application, the developed results provide a novel perspective to study the distribution of complex roots of a class of Mittag-Leffler functions and, furthermore, prove the existence of real roots.\",\"PeriodicalId\":435074,\"journal\":{\"name\":\"Communications on Pure & Applied Analysis\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure & Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/cpaa.2022039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure & Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2022039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文建立了经典椭圆偏微分方程与单面一维分数阶扩散方程性质的相似性,包括分数阶Riemann-Liouville (R-L)导数对分数阶Sobolev空间的表征、变分公式、极大值原理、Hopf引理、谱分析、主特征值及其表征理论等。作为应用,所得到的结果为研究一类Mittag-Leffler函数的复根分布提供了一个新的视角,并进一步证明了实根的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of one-sided 1-D fractional diffusion operator
This work establishes the parallel between the properties of classic elliptic PDEs and the one-sided 1-D fractional diffusion equation, that includes the characterization of fractional Sobolev spaces in terms of fractional Riemann-Liouville (R-L) derivatives, variational formulation, maximum principle, Hopf's Lemma, spectral analysis, and theory on the principal eigenvalue and its characterization, etc. As an application, the developed results provide a novel perspective to study the distribution of complex roots of a class of Mittag-Leffler functions and, furthermore, prove the existence of real roots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信