基于上下文的交叉口驾驶员意图估计

S. Lefèvre, J. Guzman, C. Laugier
{"title":"基于上下文的交叉口驾驶员意图估计","authors":"S. Lefèvre, J. Guzman, C. Laugier","doi":"10.1109/CIVTS.2011.5949532","DOIUrl":null,"url":null,"abstract":"Navigating through a road intersection is a complex manoeuvre that requires understanding the spatio-temporal relationships that exist between vehicles. Situation understanding and prediction are therefore fundamental functions for any computer-controlled safety or navigation system applied to road intersections. To interpret the situation at an intersection it is necessary to infer the intended manoeuvre of the relevant vehicles. Conventional approaches to manoeuvre prediction rely mainly on vehicle kinematics and dynamics. The contention of this paper is that contextual information in the form of topological and geometrical characteristics of the intersection can provide useful cues to understand the behaviour of a vehicle. We describe a probabilistic framework that extracts information from a digital map and uses it along with vehicle state information to estimate a driver's intended manoeuvre. The proposed approach is applicable to different types of intersections and handles uncertainty on the input information. We evaluate the performance of our approach on several real life scenarios using data recorded from real traffic.","PeriodicalId":312839,"journal":{"name":"2011 IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems (CIVTS) Proceedings","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Context-based estimation of driver intent at road intersections\",\"authors\":\"S. Lefèvre, J. Guzman, C. Laugier\",\"doi\":\"10.1109/CIVTS.2011.5949532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Navigating through a road intersection is a complex manoeuvre that requires understanding the spatio-temporal relationships that exist between vehicles. Situation understanding and prediction are therefore fundamental functions for any computer-controlled safety or navigation system applied to road intersections. To interpret the situation at an intersection it is necessary to infer the intended manoeuvre of the relevant vehicles. Conventional approaches to manoeuvre prediction rely mainly on vehicle kinematics and dynamics. The contention of this paper is that contextual information in the form of topological and geometrical characteristics of the intersection can provide useful cues to understand the behaviour of a vehicle. We describe a probabilistic framework that extracts information from a digital map and uses it along with vehicle state information to estimate a driver's intended manoeuvre. The proposed approach is applicable to different types of intersections and handles uncertainty on the input information. We evaluate the performance of our approach on several real life scenarios using data recorded from real traffic.\",\"PeriodicalId\":312839,\"journal\":{\"name\":\"2011 IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems (CIVTS) Proceedings\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems (CIVTS) Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIVTS.2011.5949532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems (CIVTS) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVTS.2011.5949532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

通过十字路口是一项复杂的操作,需要理解车辆之间存在的时空关系。因此,对于任何应用于十字路口的计算机控制的安全或导航系统来说,情况理解和预测是基本功能。要了解十字路口的情况,有必要推断出相关车辆的预期动作。传统的机动预测方法主要依赖于车辆运动学和动力学。本文的论点是,交叉路口的拓扑和几何特征形式的上下文信息可以为理解车辆的行为提供有用的线索。我们描述了一个概率框架,它从数字地图中提取信息,并将其与车辆状态信息一起使用,以估计驾驶员的预期动作。该方法适用于不同类型的交叉口,并处理了输入信息的不确定性。我们使用从真实交通中记录的数据在几个真实场景中评估了我们的方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Context-based estimation of driver intent at road intersections
Navigating through a road intersection is a complex manoeuvre that requires understanding the spatio-temporal relationships that exist between vehicles. Situation understanding and prediction are therefore fundamental functions for any computer-controlled safety or navigation system applied to road intersections. To interpret the situation at an intersection it is necessary to infer the intended manoeuvre of the relevant vehicles. Conventional approaches to manoeuvre prediction rely mainly on vehicle kinematics and dynamics. The contention of this paper is that contextual information in the form of topological and geometrical characteristics of the intersection can provide useful cues to understand the behaviour of a vehicle. We describe a probabilistic framework that extracts information from a digital map and uses it along with vehicle state information to estimate a driver's intended manoeuvre. The proposed approach is applicable to different types of intersections and handles uncertainty on the input information. We evaluate the performance of our approach on several real life scenarios using data recorded from real traffic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信