{"title":"基于全卷积神经网络的遥感图像云检测算法","authors":"S. Mohajerani, Thomas A. Krammer, Parvaneh Saeedi","doi":"10.1109/MMSP.2018.8547095","DOIUrl":null,"url":null,"abstract":"This paper presents a deep-learning based framework for addressing the problem of accurate cloud detection in remote sensing images. This framework benefits from a Fully Convolutional Neural Network (FCN), which is capable of pixel-level labeling of cloud regions in a Landsat 8 image. Also, a gradient-based identification approach is proposed to identify and exclude regions of snow/ice in the ground truths of the training set. We show that using the hybrid of the two methods (threshold-based and deep-learning) improves the performance of the cloud identification process without the need to manually correct automatically generated ground truths. In average the Jaccard index and recall measure are improved by 4.36% and 3.62%, respectively.","PeriodicalId":137522,"journal":{"name":"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":"{\"title\":\"A Cloud Detection Algorithm for Remote Sensing Images Using Fully Convolutional Neural Networks\",\"authors\":\"S. Mohajerani, Thomas A. Krammer, Parvaneh Saeedi\",\"doi\":\"10.1109/MMSP.2018.8547095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a deep-learning based framework for addressing the problem of accurate cloud detection in remote sensing images. This framework benefits from a Fully Convolutional Neural Network (FCN), which is capable of pixel-level labeling of cloud regions in a Landsat 8 image. Also, a gradient-based identification approach is proposed to identify and exclude regions of snow/ice in the ground truths of the training set. We show that using the hybrid of the two methods (threshold-based and deep-learning) improves the performance of the cloud identification process without the need to manually correct automatically generated ground truths. In average the Jaccard index and recall measure are improved by 4.36% and 3.62%, respectively.\",\"PeriodicalId\":137522,\"journal\":{\"name\":\"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)\",\"volume\":\"176 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"70\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2018.8547095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2018.8547095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Cloud Detection Algorithm for Remote Sensing Images Using Fully Convolutional Neural Networks
This paper presents a deep-learning based framework for addressing the problem of accurate cloud detection in remote sensing images. This framework benefits from a Fully Convolutional Neural Network (FCN), which is capable of pixel-level labeling of cloud regions in a Landsat 8 image. Also, a gradient-based identification approach is proposed to identify and exclude regions of snow/ice in the ground truths of the training set. We show that using the hybrid of the two methods (threshold-based and deep-learning) improves the performance of the cloud identification process without the need to manually correct automatically generated ground truths. In average the Jaccard index and recall measure are improved by 4.36% and 3.62%, respectively.