COVID-19在加纳流行期间,用户生成内容中的公众情绪

E. A. Kolog
{"title":"COVID-19在加纳流行期间,用户生成内容中的公众情绪","authors":"E. A. Kolog","doi":"10.23919/IST-Africa56635.2022.9845616","DOIUrl":null,"url":null,"abstract":"Towards post COVID-19 pandemic, a natural language processing (NLP) technique was leveraged to understand the sentiments of Ghanaians through their public discourse in tweets during the lockdown period in Ghana. With NLP resources, feature words were extracted from the tweets and fed into three machine learning algorithms to track public sentiments in the tweets. The algorithms, support vector machines (SVM), naïve-bayes (NB) and artificial neural network (ANN) were evaluated to ascertain their efficacies. Frequently occurring words used by Ghanaians during the lockdown period were extracted to provide more insight into public sentiments. The study revealed that negative sentiments prevailed throughout the COVID-19 lockdown among Ghanaians. However, positive sentiments were surprisingly high at some points during the lockdown period. The result of evaluating the machine learning classifier yielded SVM as the best performing classifier though the other classifiers performed beyond the acceptable threshold. With these findings, it is envisioned that this study will be adopted by policymakers, as a guide, towards public management of public sentiments in pandemics.","PeriodicalId":142887,"journal":{"name":"2022 IST-Africa Conference (IST-Africa)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Public Sentiments in User Generated Content amid COVID-19 Pandemic in Ghana\",\"authors\":\"E. A. Kolog\",\"doi\":\"10.23919/IST-Africa56635.2022.9845616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Towards post COVID-19 pandemic, a natural language processing (NLP) technique was leveraged to understand the sentiments of Ghanaians through their public discourse in tweets during the lockdown period in Ghana. With NLP resources, feature words were extracted from the tweets and fed into three machine learning algorithms to track public sentiments in the tweets. The algorithms, support vector machines (SVM), naïve-bayes (NB) and artificial neural network (ANN) were evaluated to ascertain their efficacies. Frequently occurring words used by Ghanaians during the lockdown period were extracted to provide more insight into public sentiments. The study revealed that negative sentiments prevailed throughout the COVID-19 lockdown among Ghanaians. However, positive sentiments were surprisingly high at some points during the lockdown period. The result of evaluating the machine learning classifier yielded SVM as the best performing classifier though the other classifiers performed beyond the acceptable threshold. With these findings, it is envisioned that this study will be adopted by policymakers, as a guide, towards public management of public sentiments in pandemics.\",\"PeriodicalId\":142887,\"journal\":{\"name\":\"2022 IST-Africa Conference (IST-Africa)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IST-Africa Conference (IST-Africa)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/IST-Africa56635.2022.9845616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IST-Africa Conference (IST-Africa)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IST-Africa56635.2022.9845616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在2019冠状病毒病大流行后,我们利用自然语言处理(NLP)技术,通过加纳封锁期间的推特公共话语,了解加纳人的情绪。利用自然语言处理资源,从推文中提取特征词,并将其输入三种机器学习算法,以跟踪推文中的公众情绪。对算法、支持向量机(SVM)、naïve-bayes (NB)和人工神经网络(ANN)进行了评价,以确定其有效性。在封锁期间,加纳人经常使用的词汇被提取出来,以便更深入地了解公众情绪。研究显示,在新冠肺炎封锁期间,负面情绪在加纳人中普遍存在。然而,在封锁期间的某些时候,积极情绪出乎意料地高。评估机器学习分类器的结果产生SVM作为表现最好的分类器,尽管其他分类器的表现超出了可接受的阈值。有了这些发现,预计决策者将采用这项研究,作为对流行病中公众情绪进行公共管理的指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Public Sentiments in User Generated Content amid COVID-19 Pandemic in Ghana
Towards post COVID-19 pandemic, a natural language processing (NLP) technique was leveraged to understand the sentiments of Ghanaians through their public discourse in tweets during the lockdown period in Ghana. With NLP resources, feature words were extracted from the tweets and fed into three machine learning algorithms to track public sentiments in the tweets. The algorithms, support vector machines (SVM), naïve-bayes (NB) and artificial neural network (ANN) were evaluated to ascertain their efficacies. Frequently occurring words used by Ghanaians during the lockdown period were extracted to provide more insight into public sentiments. The study revealed that negative sentiments prevailed throughout the COVID-19 lockdown among Ghanaians. However, positive sentiments were surprisingly high at some points during the lockdown period. The result of evaluating the machine learning classifier yielded SVM as the best performing classifier though the other classifiers performed beyond the acceptable threshold. With these findings, it is envisioned that this study will be adopted by policymakers, as a guide, towards public management of public sentiments in pandemics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信