遗传算法在模糊专家系统参数识别中的一种新的编码方法

Mei-Shiang Chang, H. Chen
{"title":"遗传算法在模糊专家系统参数识别中的一种新的编码方法","authors":"Mei-Shiang Chang, H. Chen","doi":"10.1109/AFSS.1996.583645","DOIUrl":null,"url":null,"abstract":"The membership functions of fuzzy expert systems need a systematic, self-learning method instead of a subjective tuning method in order to increase the performance of the fuzzy model. The genetic-algorithm learning method is consequently employed. The rule-based encoding scheme would bring the redundant information for the genetic algorithm by repeatedly representing the similar membership function in an individual. The new encoding method, which is a parameter-based encoding scheme, would diminish the redundant representation of fuzzy parameters. This method would separate the data structures of fuzzy rules and fuzzy parameters in the genetic-algorithm learning method. This method should efficiently use the memory resources of computers and increase the dimensions of the solved problem. Then, a numerical example and the learning results are demonstrated. Discussions about the effects of population size, reproduction method, crossover rate, mutation rate and fitness scaling are included. Finally, some conclusions are presented.","PeriodicalId":197019,"journal":{"name":"Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A new encoding method of genetic algorithms towards parameter identification of fuzzy expert systems\",\"authors\":\"Mei-Shiang Chang, H. Chen\",\"doi\":\"10.1109/AFSS.1996.583645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The membership functions of fuzzy expert systems need a systematic, self-learning method instead of a subjective tuning method in order to increase the performance of the fuzzy model. The genetic-algorithm learning method is consequently employed. The rule-based encoding scheme would bring the redundant information for the genetic algorithm by repeatedly representing the similar membership function in an individual. The new encoding method, which is a parameter-based encoding scheme, would diminish the redundant representation of fuzzy parameters. This method would separate the data structures of fuzzy rules and fuzzy parameters in the genetic-algorithm learning method. This method should efficiently use the memory resources of computers and increase the dimensions of the solved problem. Then, a numerical example and the learning results are demonstrated. Discussions about the effects of population size, reproduction method, crossover rate, mutation rate and fitness scaling are included. Finally, some conclusions are presented.\",\"PeriodicalId\":197019,\"journal\":{\"name\":\"Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AFSS.1996.583645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFSS.1996.583645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

模糊专家系统的隶属函数需要一种系统的、自学习的方法,而不是主观的调整方法,以提高模糊模型的性能。因此采用遗传算法学习方法。基于规则的编码方案通过重复表示个体中相似的隶属度函数,为遗传算法带来冗余信息。新的编码方法是一种基于参数的编码方案,可以减少模糊参数的冗余表示。该方法将遗传算法学习方法中的模糊规则和模糊参数的数据结构分离开来。这种方法既能有效地利用计算机的内存资源,又能提高所解问题的维数。最后给出了一个算例和学习结果。讨论了种群大小、繁殖方式、交叉率、突变率和适应度标度的影响。最后,给出了一些结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new encoding method of genetic algorithms towards parameter identification of fuzzy expert systems
The membership functions of fuzzy expert systems need a systematic, self-learning method instead of a subjective tuning method in order to increase the performance of the fuzzy model. The genetic-algorithm learning method is consequently employed. The rule-based encoding scheme would bring the redundant information for the genetic algorithm by repeatedly representing the similar membership function in an individual. The new encoding method, which is a parameter-based encoding scheme, would diminish the redundant representation of fuzzy parameters. This method would separate the data structures of fuzzy rules and fuzzy parameters in the genetic-algorithm learning method. This method should efficiently use the memory resources of computers and increase the dimensions of the solved problem. Then, a numerical example and the learning results are demonstrated. Discussions about the effects of population size, reproduction method, crossover rate, mutation rate and fitness scaling are included. Finally, some conclusions are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信