循环支架微泵系统的设计

A. Khaustov, G. Boyarsky, K. Krotov
{"title":"循环支架微泵系统的设计","authors":"A. Khaustov, G. Boyarsky, K. Krotov","doi":"10.32603/1993-8985-2022-25-5-104-112","DOIUrl":null,"url":null,"abstract":"Introduction. Support systems currently used in modern cardiac surgery to provide partial or complete, permanent or temporary replacement of cardiac function are frequently characterized by large dimensions, thus requiring major surgical interventions. Low invasiveness can be ensured by reducing the size of the implanted part of such systems, allowing these devices to be inserted through the femoral artery.Aim. Development of a minimally invasive micropump system to support blood circulation.Materials and methods. Based on the analysis of implementation of micropump circulatory support systems (MCSS), the configuration, operational principles and main components of such a system were determined. When designing a micropump, as a unit defining the weight and size parameters of the entire system, numerical and experimental methods were used to optimize its flow path based on the condition of minimizing blood injury and thrombus formation. The lubrication and cooling system was developed by solving the thermodynamic problem of heat removal. The electronic control unit was developed on the basis of accumulated experience in the design and operation of control units for circulatory support systems.Results. A micropump with a diameter of 6.5 mm and a length of 43 mm with the required hydro- and hemodynamic parameters was designed. The device ensures minimal trauma and thrombus formation. The main MCSS parameters, as well as its main components (electric drives, lubrication and cooling systems), were defined. The configuration and operational principles of the electronic control unit (ECU), consisting in a microprocessor-based control system with feedback, were developed. The ECU built-in software manages the rotational speed of the electric drives of the micropump and coolant supply pump in the required range. In addition, the software is used to measure, display and register the MCSS operational parameters, as well as to monitor their operation in the required ranges and to exchange data between the ECU and the PC.Conclusion. All the necessary documentation for the MCSS nodes and components was prepared. These nodes and components ensure the hydro- and hemodynamic parameters required for the use of the developed minimally invasive micropump system. Future work will address the stages of MCSS assembly and debugging.","PeriodicalId":217555,"journal":{"name":"Journal of the Russian Universities. Radioelectronics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing of a Micropump System for Circulatory Support\",\"authors\":\"A. Khaustov, G. Boyarsky, K. Krotov\",\"doi\":\"10.32603/1993-8985-2022-25-5-104-112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction. Support systems currently used in modern cardiac surgery to provide partial or complete, permanent or temporary replacement of cardiac function are frequently characterized by large dimensions, thus requiring major surgical interventions. Low invasiveness can be ensured by reducing the size of the implanted part of such systems, allowing these devices to be inserted through the femoral artery.Aim. Development of a minimally invasive micropump system to support blood circulation.Materials and methods. Based on the analysis of implementation of micropump circulatory support systems (MCSS), the configuration, operational principles and main components of such a system were determined. When designing a micropump, as a unit defining the weight and size parameters of the entire system, numerical and experimental methods were used to optimize its flow path based on the condition of minimizing blood injury and thrombus formation. The lubrication and cooling system was developed by solving the thermodynamic problem of heat removal. The electronic control unit was developed on the basis of accumulated experience in the design and operation of control units for circulatory support systems.Results. A micropump with a diameter of 6.5 mm and a length of 43 mm with the required hydro- and hemodynamic parameters was designed. The device ensures minimal trauma and thrombus formation. The main MCSS parameters, as well as its main components (electric drives, lubrication and cooling systems), were defined. The configuration and operational principles of the electronic control unit (ECU), consisting in a microprocessor-based control system with feedback, were developed. The ECU built-in software manages the rotational speed of the electric drives of the micropump and coolant supply pump in the required range. In addition, the software is used to measure, display and register the MCSS operational parameters, as well as to monitor their operation in the required ranges and to exchange data between the ECU and the PC.Conclusion. All the necessary documentation for the MCSS nodes and components was prepared. These nodes and components ensure the hydro- and hemodynamic parameters required for the use of the developed minimally invasive micropump system. Future work will address the stages of MCSS assembly and debugging.\",\"PeriodicalId\":217555,\"journal\":{\"name\":\"Journal of the Russian Universities. Radioelectronics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Russian Universities. Radioelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32603/1993-8985-2022-25-5-104-112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Russian Universities. Radioelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32603/1993-8985-2022-25-5-104-112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍。目前在现代心脏外科中用于提供部分或完全、永久或暂时心脏功能替代的支持系统,其特点往往是尺寸大,因此需要进行重大的手术干预。通过减小这种系统植入部分的尺寸,使这些装置可以通过股动脉插入,从而确保低侵入性。一种支持血液循环的微创微泵系统的开发。材料和方法。在分析微泵循环支撑系统(MCSS)实现情况的基础上,确定了微泵循环支撑系统的结构、工作原理和主要部件。在设计微泵时,作为一个确定整个系统重量和尺寸参数的单元,采用数值和实验方法,在最小化血液损伤和血栓形成的条件下,对其流动路径进行优化。润滑和冷却系统是通过解决散热的热力学问题而发展起来的。电子控制单元是在积累了循环支撑系统控制单元设计和运行经验的基础上开发的。设计了直径为6.5 mm、长度为43 mm的微泵,并满足了所需的水力和血流动力学参数。该装置确保最小的创伤和血栓形成。定义了MCSS的主要参数及其主要部件(电力驱动、润滑和冷却系统)。研究了基于微处理器的反馈控制系统中电子控制单元(ECU)的结构和工作原理。ECU内置软件在所需范围内管理微泵和冷却剂供应泵的电动驱动器的转速。此外,该软件还用于测量、显示和记录MCSS的运行参数,并监视其在要求范围内的运行,并在ECU和pc之间交换数据。为MCSS节点和组件准备了所有必要的文档。这些节点和组件确保使用开发的微创微泵系统所需的水力和血流动力学参数。未来的工作将解决MCSS组装和调试的阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing of a Micropump System for Circulatory Support
Introduction. Support systems currently used in modern cardiac surgery to provide partial or complete, permanent or temporary replacement of cardiac function are frequently characterized by large dimensions, thus requiring major surgical interventions. Low invasiveness can be ensured by reducing the size of the implanted part of such systems, allowing these devices to be inserted through the femoral artery.Aim. Development of a minimally invasive micropump system to support blood circulation.Materials and methods. Based on the analysis of implementation of micropump circulatory support systems (MCSS), the configuration, operational principles and main components of such a system were determined. When designing a micropump, as a unit defining the weight and size parameters of the entire system, numerical and experimental methods were used to optimize its flow path based on the condition of minimizing blood injury and thrombus formation. The lubrication and cooling system was developed by solving the thermodynamic problem of heat removal. The electronic control unit was developed on the basis of accumulated experience in the design and operation of control units for circulatory support systems.Results. A micropump with a diameter of 6.5 mm and a length of 43 mm with the required hydro- and hemodynamic parameters was designed. The device ensures minimal trauma and thrombus formation. The main MCSS parameters, as well as its main components (electric drives, lubrication and cooling systems), were defined. The configuration and operational principles of the electronic control unit (ECU), consisting in a microprocessor-based control system with feedback, were developed. The ECU built-in software manages the rotational speed of the electric drives of the micropump and coolant supply pump in the required range. In addition, the software is used to measure, display and register the MCSS operational parameters, as well as to monitor their operation in the required ranges and to exchange data between the ECU and the PC.Conclusion. All the necessary documentation for the MCSS nodes and components was prepared. These nodes and components ensure the hydro- and hemodynamic parameters required for the use of the developed minimally invasive micropump system. Future work will address the stages of MCSS assembly and debugging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信