用田口法分析切削参数对GFRP复合材料钻孔的影响

Iman M. Naemah
{"title":"用田口法分析切削参数对GFRP复合材料钻孔的影响","authors":"Iman M. Naemah","doi":"10.24237/djes.2023.16108","DOIUrl":null,"url":null,"abstract":"Carbon Fiber Reinforced Plastic (CFRP) is widely employed today, mainly in industries, due to its required properties of high corrosion resistance, high strength, and lightweight, this work studies the influence of the cutting parameters on the surface roughness by drilling two types of carbon-fiber-reinforced polymer composite material (CFRP) Composites 0° angle and 90° angle, the investigated of the drilling of CFRP by using an experimental design based on the Taguchi L18 orthogonal array. Spindle speed, feed rate, and tool diameter were the input parameters, and surface roughness was the output. The cutting settings (410, 806, and 1003) rpm and two different HSS tools were employed in the drilling operation of the CFRP composite. The feed rates used were (0.1, 0.2, and 0.3) mm/rev (at 10 and 12 mm in diameter). The Taguchi approach, the cutting speed, feed rate, and tool diameter were optimized to be 1003 rpm spindle speed, 0.1 mm/rev feed rate, and 10 mm, respectively, at a 0° angle, the surface roughness was 2.74 µm, while at a 90° angle, 4.12 µm, surface roughness was created by the Taguchi optimization of the surface for the cutting variables. According to the ANOVA analysis of the surface roughness (Ra) for CFRP/0-angles, The P-value of the factor feed rate was 0.044 less than 0.05, while the p-values of the tool diameter and spindle speed were greater than 0.05. At the CFRP/90-angle, the p-values of the factors feed rate and spindle speed were both less than 0.05, while the p-value of the tool diameter was 0.208.","PeriodicalId":294128,"journal":{"name":"Diyala Journal of Engineering Sciences","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the Influents of Cutting Parameters in Drilling GFRP Composites Using Taguchi Method\",\"authors\":\"Iman M. Naemah\",\"doi\":\"10.24237/djes.2023.16108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon Fiber Reinforced Plastic (CFRP) is widely employed today, mainly in industries, due to its required properties of high corrosion resistance, high strength, and lightweight, this work studies the influence of the cutting parameters on the surface roughness by drilling two types of carbon-fiber-reinforced polymer composite material (CFRP) Composites 0° angle and 90° angle, the investigated of the drilling of CFRP by using an experimental design based on the Taguchi L18 orthogonal array. Spindle speed, feed rate, and tool diameter were the input parameters, and surface roughness was the output. The cutting settings (410, 806, and 1003) rpm and two different HSS tools were employed in the drilling operation of the CFRP composite. The feed rates used were (0.1, 0.2, and 0.3) mm/rev (at 10 and 12 mm in diameter). The Taguchi approach, the cutting speed, feed rate, and tool diameter were optimized to be 1003 rpm spindle speed, 0.1 mm/rev feed rate, and 10 mm, respectively, at a 0° angle, the surface roughness was 2.74 µm, while at a 90° angle, 4.12 µm, surface roughness was created by the Taguchi optimization of the surface for the cutting variables. According to the ANOVA analysis of the surface roughness (Ra) for CFRP/0-angles, The P-value of the factor feed rate was 0.044 less than 0.05, while the p-values of the tool diameter and spindle speed were greater than 0.05. At the CFRP/90-angle, the p-values of the factors feed rate and spindle speed were both less than 0.05, while the p-value of the tool diameter was 0.208.\",\"PeriodicalId\":294128,\"journal\":{\"name\":\"Diyala Journal of Engineering Sciences\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diyala Journal of Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24237/djes.2023.16108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diyala Journal of Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24237/djes.2023.16108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

碳纤维增强塑料(CFRP)在当今广泛应用,主要是在工业中,由于其要求的性能高耐腐蚀,高强度,轻量化,本工作研究了切割参数对表面粗糙度的影响,通过钻孔两种类型的碳纤维增强聚合物复合材料(CFRP)复合材料0°角和90°角,研究了CFRP的钻孔实验设计基于田口L18正交阵列。主轴转速、进给速率和刀具直径为输入参数,表面粗糙度为输出参数。在CFRP复合材料的钻孔作业中,使用了切削设置(410、806和1003)rpm和两种不同的高速钢刀具。进料速率分别为(0.1,0.2和0.3)mm/rev(直径为10和12 mm时)。在Taguchi方法中,切削速度、进给速度和刀具直径分别优化为1003 rpm主轴转速、0.1 mm/rev进给速度和10 mm,在0°角时,表面粗糙度为2.74µm,而在90°角时,表面粗糙度为4.12µm。对CFRP/0角表面粗糙度(Ra)进行方差分析,因子进给速度的p值为0.044 < 0.05,而刀具直径和主轴转速的p值均大于0.05。在CFRP/90角下,进给速度和主轴转速的p值均小于0.05,而刀具直径的p值为0.208。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of the Influents of Cutting Parameters in Drilling GFRP Composites Using Taguchi Method
Carbon Fiber Reinforced Plastic (CFRP) is widely employed today, mainly in industries, due to its required properties of high corrosion resistance, high strength, and lightweight, this work studies the influence of the cutting parameters on the surface roughness by drilling two types of carbon-fiber-reinforced polymer composite material (CFRP) Composites 0° angle and 90° angle, the investigated of the drilling of CFRP by using an experimental design based on the Taguchi L18 orthogonal array. Spindle speed, feed rate, and tool diameter were the input parameters, and surface roughness was the output. The cutting settings (410, 806, and 1003) rpm and two different HSS tools were employed in the drilling operation of the CFRP composite. The feed rates used were (0.1, 0.2, and 0.3) mm/rev (at 10 and 12 mm in diameter). The Taguchi approach, the cutting speed, feed rate, and tool diameter were optimized to be 1003 rpm spindle speed, 0.1 mm/rev feed rate, and 10 mm, respectively, at a 0° angle, the surface roughness was 2.74 µm, while at a 90° angle, 4.12 µm, surface roughness was created by the Taguchi optimization of the surface for the cutting variables. According to the ANOVA analysis of the surface roughness (Ra) for CFRP/0-angles, The P-value of the factor feed rate was 0.044 less than 0.05, while the p-values of the tool diameter and spindle speed were greater than 0.05. At the CFRP/90-angle, the p-values of the factors feed rate and spindle speed were both less than 0.05, while the p-value of the tool diameter was 0.208.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信