S. Frankl, A. Gelner, S. Gleis, M. Härtl, G. Wachtmeister
{"title":"HPDF发动机可再生和可持续燃料的数值研究","authors":"S. Frankl, A. Gelner, S. Gleis, M. Härtl, G. Wachtmeister","doi":"10.1115/power2020-16438","DOIUrl":null,"url":null,"abstract":"\n Renewable and sustainable fuels (based on electricity) will play a key role in future scenarios for power supply. Enabling storage and distribution of local and temporal fluctuations of renewable energies, different e-fuels with varying production processes and characteristics get interesting for different locations. For reconversion of the chemical energy, a fuel-flexible internal combustion engine with a High Pressure Dual Fuel (HPDF) combustion process is suitable for different e-fuels. As the combustion process is the main influence on emissions, combustion behavior of the studied fuels hydrogen, methane, methanol and ammonia, ignited by the pilot fuels Fischer-Tropsch diesel and polyoxymethylene dimethyl ethers (OME), is investigated in varying fuel pairings. In addition, a review of production efficiencies and important characteristics like toxicity and storage method is given. Afterwards, the application of the investigated fuels in HPDF-combustion is investigated. The investigations are conducted with a numerical 3D-CFD model of a large bore high speed single cylinder research engine. The differences in ignition and combustion when using diesel or OME as pilot fuel are shown and a comparison of the emissions for the used main fuels is given.","PeriodicalId":282703,"journal":{"name":"ASME 2020 Power Conference","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Numerical Study on Renewable and Sustainable Fuels for HPDF Engines\",\"authors\":\"S. Frankl, A. Gelner, S. Gleis, M. Härtl, G. Wachtmeister\",\"doi\":\"10.1115/power2020-16438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Renewable and sustainable fuels (based on electricity) will play a key role in future scenarios for power supply. Enabling storage and distribution of local and temporal fluctuations of renewable energies, different e-fuels with varying production processes and characteristics get interesting for different locations. For reconversion of the chemical energy, a fuel-flexible internal combustion engine with a High Pressure Dual Fuel (HPDF) combustion process is suitable for different e-fuels. As the combustion process is the main influence on emissions, combustion behavior of the studied fuels hydrogen, methane, methanol and ammonia, ignited by the pilot fuels Fischer-Tropsch diesel and polyoxymethylene dimethyl ethers (OME), is investigated in varying fuel pairings. In addition, a review of production efficiencies and important characteristics like toxicity and storage method is given. Afterwards, the application of the investigated fuels in HPDF-combustion is investigated. The investigations are conducted with a numerical 3D-CFD model of a large bore high speed single cylinder research engine. The differences in ignition and combustion when using diesel or OME as pilot fuel are shown and a comparison of the emissions for the used main fuels is given.\",\"PeriodicalId\":282703,\"journal\":{\"name\":\"ASME 2020 Power Conference\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2020 Power Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/power2020-16438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2020 Power Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/power2020-16438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical Study on Renewable and Sustainable Fuels for HPDF Engines
Renewable and sustainable fuels (based on electricity) will play a key role in future scenarios for power supply. Enabling storage and distribution of local and temporal fluctuations of renewable energies, different e-fuels with varying production processes and characteristics get interesting for different locations. For reconversion of the chemical energy, a fuel-flexible internal combustion engine with a High Pressure Dual Fuel (HPDF) combustion process is suitable for different e-fuels. As the combustion process is the main influence on emissions, combustion behavior of the studied fuels hydrogen, methane, methanol and ammonia, ignited by the pilot fuels Fischer-Tropsch diesel and polyoxymethylene dimethyl ethers (OME), is investigated in varying fuel pairings. In addition, a review of production efficiencies and important characteristics like toxicity and storage method is given. Afterwards, the application of the investigated fuels in HPDF-combustion is investigated. The investigations are conducted with a numerical 3D-CFD model of a large bore high speed single cylinder research engine. The differences in ignition and combustion when using diesel or OME as pilot fuel are shown and a comparison of the emissions for the used main fuels is given.