CDMA参数的迭代约束惩罚似然估计

E. Khan, D. Slock
{"title":"CDMA参数的迭代约束惩罚似然估计","authors":"E. Khan, D. Slock","doi":"10.1109/ACSSC.2002.1197023","DOIUrl":null,"url":null,"abstract":"We describe an iterative method for maximum likelihood (ML) parameter estimation corrupted by additive white Gaussian noise. In the objective function we subtract/add the Kullback-Leibler (KL) distance function or Euclidean distance function to keep the old parameter set close to the new ones and it can be considered as a penalty term. The above augmented cost function can be maximized/minimized over the constraint that the detected data vector lie on the sphere. We simplify this constraint function by using first order Taylor expansion at the old parameter value. The useful behavior of the proposed algorithm is verified by numerical experiments.","PeriodicalId":284950,"journal":{"name":"Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Iterative constrained penalized likelihood estimation of parameters for CDMA\",\"authors\":\"E. Khan, D. Slock\",\"doi\":\"10.1109/ACSSC.2002.1197023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe an iterative method for maximum likelihood (ML) parameter estimation corrupted by additive white Gaussian noise. In the objective function we subtract/add the Kullback-Leibler (KL) distance function or Euclidean distance function to keep the old parameter set close to the new ones and it can be considered as a penalty term. The above augmented cost function can be maximized/minimized over the constraint that the detected data vector lie on the sphere. We simplify this constraint function by using first order Taylor expansion at the old parameter value. The useful behavior of the proposed algorithm is verified by numerical experiments.\",\"PeriodicalId\":284950,\"journal\":{\"name\":\"Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002.\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2002.1197023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2002.1197023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们描述了一种被加性高斯白噪声破坏的极大似然(ML)参数估计的迭代方法。在目标函数中,我们减去/增加Kullback-Leibler (KL)距离函数或欧几里得距离函数,使旧参数集与新参数集保持接近,并将其视为惩罚项。上述增广成本函数可以在检测到的数据向量位于球体上的约束下最大化/最小化。我们在旧参数值处使用一阶泰勒展开简化了约束函数。数值实验验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iterative constrained penalized likelihood estimation of parameters for CDMA
We describe an iterative method for maximum likelihood (ML) parameter estimation corrupted by additive white Gaussian noise. In the objective function we subtract/add the Kullback-Leibler (KL) distance function or Euclidean distance function to keep the old parameter set close to the new ones and it can be considered as a penalty term. The above augmented cost function can be maximized/minimized over the constraint that the detected data vector lie on the sphere. We simplify this constraint function by using first order Taylor expansion at the old parameter value. The useful behavior of the proposed algorithm is verified by numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信