多阶段检索体系中的近似最近邻搜索和轻量级密集向量重排序

Zhengkai Tu, Wei Yang, Zihang Fu, Yuqing Xie, Luchen Tan, Kun Xiong, Ming Li, Jimmy J. Lin
{"title":"多阶段检索体系中的近似最近邻搜索和轻量级密集向量重排序","authors":"Zhengkai Tu, Wei Yang, Zihang Fu, Yuqing Xie, Luchen Tan, Kun Xiong, Ming Li, Jimmy J. Lin","doi":"10.1145/3409256.3409818","DOIUrl":null,"url":null,"abstract":"In the context of a multi-stage retrieval architecture, we explore candidate generation based on approximate nearest neighbor (ANN) search and lightweight reranking based on dense vector representations. These results serve as input to slower but more accurate rerankers such as those based on transformers. Our goal is to characterize the effectiveness-efficiency tradeoff space in this context. We find that, on sentence-length segments of text, ANN techniques coupled with dense vector reranking dominate approaches based on inverted indexes, and thus our proposed design should be preferred. For paragraph-length segments, ANN-based and index-based techniques share the Pareto frontier, which means that the choice of alternatives depends on the desired operating point.","PeriodicalId":430907,"journal":{"name":"Proceedings of the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Approximate Nearest Neighbor Search and Lightweight Dense Vector Reranking in Multi-Stage Retrieval Architectures\",\"authors\":\"Zhengkai Tu, Wei Yang, Zihang Fu, Yuqing Xie, Luchen Tan, Kun Xiong, Ming Li, Jimmy J. Lin\",\"doi\":\"10.1145/3409256.3409818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of a multi-stage retrieval architecture, we explore candidate generation based on approximate nearest neighbor (ANN) search and lightweight reranking based on dense vector representations. These results serve as input to slower but more accurate rerankers such as those based on transformers. Our goal is to characterize the effectiveness-efficiency tradeoff space in this context. We find that, on sentence-length segments of text, ANN techniques coupled with dense vector reranking dominate approaches based on inverted indexes, and thus our proposed design should be preferred. For paragraph-length segments, ANN-based and index-based techniques share the Pareto frontier, which means that the choice of alternatives depends on the desired operating point.\",\"PeriodicalId\":430907,\"journal\":{\"name\":\"Proceedings of the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3409256.3409818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3409256.3409818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在多阶段检索体系结构的背景下,我们探索了基于近似最近邻(ANN)搜索的候选生成和基于密集向量表示的轻量级重排序。这些结果可以作为输入,用于更慢但更准确的重新排序,例如基于变压器的重新排序。我们的目标是描述这种情况下的有效性-效率权衡空间。我们发现,在句子长度的文本片段上,基于倒排索引的人工神经网络技术与密集向量重排序相结合的方法占主导地位,因此我们提出的设计应该是首选的。对于段长度分段,基于人工神经网络和基于索引的技术共享帕累托边界,这意味着备选方案的选择取决于期望的操作点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate Nearest Neighbor Search and Lightweight Dense Vector Reranking in Multi-Stage Retrieval Architectures
In the context of a multi-stage retrieval architecture, we explore candidate generation based on approximate nearest neighbor (ANN) search and lightweight reranking based on dense vector representations. These results serve as input to slower but more accurate rerankers such as those based on transformers. Our goal is to characterize the effectiveness-efficiency tradeoff space in this context. We find that, on sentence-length segments of text, ANN techniques coupled with dense vector reranking dominate approaches based on inverted indexes, and thus our proposed design should be preferred. For paragraph-length segments, ANN-based and index-based techniques share the Pareto frontier, which means that the choice of alternatives depends on the desired operating point.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信