H. González-Aguilar, David Orden, P. Pérez-Lantero, D. Rappaport, C. Seara, J. Tejel, J. Urrutia
{"title":"最大直线凸子集","authors":"H. González-Aguilar, David Orden, P. Pérez-Lantero, D. Rappaport, C. Seara, J. Tejel, J. Urrutia","doi":"10.1137/19M1303010","DOIUrl":null,"url":null,"abstract":"Let $P$ be a set of $n$ points in the plane. We consider a variation of the classical Erdős-Szekeres problem, presenting efficient algorithms with $O(n^3)$ running time and $O(n^2)$ space complexity that compute: (1) A subset $S$ of $P$ such that the boundary of the rectilinear convex hull of $S$ has the maximum number of points from $P$, (2) a subset $S$ of $P$ such that the boundary of the rectilinear convex hull of $S$ has the maximum number of points from $P$ and its interior contains no element of $P$, (3) a subset $S$ of $P$ such that the rectilinear convex hull of $S$ has maximum area and its interior contains no element of $P$, and (4) when each point of $P$ is assigned a weight, positive or negative, a subset $S$ of $P$ that maximizes the total weight of the points in the rectilinear convex hull of $S$.","PeriodicalId":335412,"journal":{"name":"International Symposium on Fundamentals of Computation Theory","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Maximum rectilinear convex subsets\",\"authors\":\"H. González-Aguilar, David Orden, P. Pérez-Lantero, D. Rappaport, C. Seara, J. Tejel, J. Urrutia\",\"doi\":\"10.1137/19M1303010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $P$ be a set of $n$ points in the plane. We consider a variation of the classical Erdős-Szekeres problem, presenting efficient algorithms with $O(n^3)$ running time and $O(n^2)$ space complexity that compute: (1) A subset $S$ of $P$ such that the boundary of the rectilinear convex hull of $S$ has the maximum number of points from $P$, (2) a subset $S$ of $P$ such that the boundary of the rectilinear convex hull of $S$ has the maximum number of points from $P$ and its interior contains no element of $P$, (3) a subset $S$ of $P$ such that the rectilinear convex hull of $S$ has maximum area and its interior contains no element of $P$, and (4) when each point of $P$ is assigned a weight, positive or negative, a subset $S$ of $P$ that maximizes the total weight of the points in the rectilinear convex hull of $S$.\",\"PeriodicalId\":335412,\"journal\":{\"name\":\"International Symposium on Fundamentals of Computation Theory\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Fundamentals of Computation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/19M1303010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Fundamentals of Computation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/19M1303010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
摘要
设P是平面上n个点的集合。我们考虑了经典Erdős-Szekeres问题的一个变体,提出了具有$O(n^3)$运行时间和$O(n^2)$空间复杂度的高效算法,计算:(1)的一个子集S P,美元的美元直线的边界凸包的年代有最大数量的美元从$ P $点,(2)一个子集S P,美元的美元直线的边界凸包的年代有最大数量的美元从$ P $ $ P $及其内部不包含的元素,(3)的一个子集S $ P $(美元直线凸包的年代最大的地区,其内部包含美元没有$ P $的元素,和(4)当每个$ P $被分配一个权重,正的或负的,P$的一个子集$S$,它使$S$的直线凸包中的点的总重量最大化。
Let $P$ be a set of $n$ points in the plane. We consider a variation of the classical Erdős-Szekeres problem, presenting efficient algorithms with $O(n^3)$ running time and $O(n^2)$ space complexity that compute: (1) A subset $S$ of $P$ such that the boundary of the rectilinear convex hull of $S$ has the maximum number of points from $P$, (2) a subset $S$ of $P$ such that the boundary of the rectilinear convex hull of $S$ has the maximum number of points from $P$ and its interior contains no element of $P$, (3) a subset $S$ of $P$ such that the rectilinear convex hull of $S$ has maximum area and its interior contains no element of $P$, and (4) when each point of $P$ is assigned a weight, positive or negative, a subset $S$ of $P$ that maximizes the total weight of the points in the rectilinear convex hull of $S$.