J. Bouchard, W. Lemaire, Arnaud Samson, C. Paulin, J. Pratte, Y. B. Lauzière, R. Fontaine
{"title":"用于时域漫射光学层析成像的低成本四通道时间相关单光子计数系统的初步结果","authors":"J. Bouchard, W. Lemaire, Arnaud Samson, C. Paulin, J. Pratte, Y. B. Lauzière, R. Fontaine","doi":"10.1109/MeMeA.2016.7533733","DOIUrl":null,"url":null,"abstract":"Time-domain diffuse optical tomography (TD-DOT) provides information-rich data that have not yet been fully exploited for image reconstruction, notably to increase imaging spatial resolution. Current TD-DOT scanners suffer from a very low sensitivity owing to their small number of detection channels. This leads to excessively long acquisition times for in vivo imaging. To obtain a higher number of detection channels, thus increasing detection density, a low-cost time-correlated single photon counting (TCSPC) system dedicated to TD-DOT imaging was designed and developed, resorting solely to off-the-shelf electronic components to reduce costs, in distinction to custom application-specific integrated circuit (ASIC) solutions. It features 4 input channels with a 13.02 ps bin width and a 18.1 ps FWHM accuracy throughout a measurement dynamic range of 12.5 ns. Each channel includes a leading-edge discriminator, with a programmable threshold, for direct interfacing with off-the-shelf photodetector modules. A software-programmable delay line was added to the channel signal path to compensate for undesired propagation delays. The system also supports a virtually unlimited number of TCSPC channels using a daisy-chain configuration through an onboard Ethernet switch.","PeriodicalId":221120,"journal":{"name":"2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Preliminary results of a low-cost 4-channel time-correlated single photon counting system for time-domain diffuse optical tomography\",\"authors\":\"J. Bouchard, W. Lemaire, Arnaud Samson, C. Paulin, J. Pratte, Y. B. Lauzière, R. Fontaine\",\"doi\":\"10.1109/MeMeA.2016.7533733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time-domain diffuse optical tomography (TD-DOT) provides information-rich data that have not yet been fully exploited for image reconstruction, notably to increase imaging spatial resolution. Current TD-DOT scanners suffer from a very low sensitivity owing to their small number of detection channels. This leads to excessively long acquisition times for in vivo imaging. To obtain a higher number of detection channels, thus increasing detection density, a low-cost time-correlated single photon counting (TCSPC) system dedicated to TD-DOT imaging was designed and developed, resorting solely to off-the-shelf electronic components to reduce costs, in distinction to custom application-specific integrated circuit (ASIC) solutions. It features 4 input channels with a 13.02 ps bin width and a 18.1 ps FWHM accuracy throughout a measurement dynamic range of 12.5 ns. Each channel includes a leading-edge discriminator, with a programmable threshold, for direct interfacing with off-the-shelf photodetector modules. A software-programmable delay line was added to the channel signal path to compensate for undesired propagation delays. The system also supports a virtually unlimited number of TCSPC channels using a daisy-chain configuration through an onboard Ethernet switch.\",\"PeriodicalId\":221120,\"journal\":{\"name\":\"2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA.2016.7533733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA.2016.7533733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preliminary results of a low-cost 4-channel time-correlated single photon counting system for time-domain diffuse optical tomography
Time-domain diffuse optical tomography (TD-DOT) provides information-rich data that have not yet been fully exploited for image reconstruction, notably to increase imaging spatial resolution. Current TD-DOT scanners suffer from a very low sensitivity owing to their small number of detection channels. This leads to excessively long acquisition times for in vivo imaging. To obtain a higher number of detection channels, thus increasing detection density, a low-cost time-correlated single photon counting (TCSPC) system dedicated to TD-DOT imaging was designed and developed, resorting solely to off-the-shelf electronic components to reduce costs, in distinction to custom application-specific integrated circuit (ASIC) solutions. It features 4 input channels with a 13.02 ps bin width and a 18.1 ps FWHM accuracy throughout a measurement dynamic range of 12.5 ns. Each channel includes a leading-edge discriminator, with a programmable threshold, for direct interfacing with off-the-shelf photodetector modules. A software-programmable delay line was added to the channel signal path to compensate for undesired propagation delays. The system also supports a virtually unlimited number of TCSPC channels using a daisy-chain configuration through an onboard Ethernet switch.