{"title":"fpga的资源最优平方","authors":"Andreas Böttcher, M. Kumm, F. D. Dinechin","doi":"10.1109/FPL57034.2022.00018","DOIUrl":null,"url":null,"abstract":"Squaring is an essential operation in computer arithmetic that can be considered as a special case of multiplication where several simplifications can be applied to reduce the complexity of the resulting circuit. However, the design of a squarer is not straightforward for modern FPGAs that provide embedded DSP blocks and look-up-tables (LUTs). This work proposes a flexible method to design resource optimal squarers, i.e., a squarer that uses a minimum number of LUTs for a user-defined number of DSP blocks. The method uses an integer linear programming (ILP) formulation based on a generalization of multiplier tiling. It is shown that the proposed squarer design method significantly improves the LUT utilization for a given number of DSPs over previous methods, while maintaining a similar critical path delay and latency.","PeriodicalId":380116,"journal":{"name":"2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resource Optimal Squarers for FPGAs\",\"authors\":\"Andreas Böttcher, M. Kumm, F. D. Dinechin\",\"doi\":\"10.1109/FPL57034.2022.00018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Squaring is an essential operation in computer arithmetic that can be considered as a special case of multiplication where several simplifications can be applied to reduce the complexity of the resulting circuit. However, the design of a squarer is not straightforward for modern FPGAs that provide embedded DSP blocks and look-up-tables (LUTs). This work proposes a flexible method to design resource optimal squarers, i.e., a squarer that uses a minimum number of LUTs for a user-defined number of DSP blocks. The method uses an integer linear programming (ILP) formulation based on a generalization of multiplier tiling. It is shown that the proposed squarer design method significantly improves the LUT utilization for a given number of DSPs over previous methods, while maintaining a similar critical path delay and latency.\",\"PeriodicalId\":380116,\"journal\":{\"name\":\"2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPL57034.2022.00018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL57034.2022.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Squaring is an essential operation in computer arithmetic that can be considered as a special case of multiplication where several simplifications can be applied to reduce the complexity of the resulting circuit. However, the design of a squarer is not straightforward for modern FPGAs that provide embedded DSP blocks and look-up-tables (LUTs). This work proposes a flexible method to design resource optimal squarers, i.e., a squarer that uses a minimum number of LUTs for a user-defined number of DSP blocks. The method uses an integer linear programming (ILP) formulation based on a generalization of multiplier tiling. It is shown that the proposed squarer design method significantly improves the LUT utilization for a given number of DSPs over previous methods, while maintaining a similar critical path delay and latency.