SAR图像无监督分割的高阶三元组CRF-Pcanet

Peng Zhang, Yinyin Jiang, Beibei Li, Ming Li, M. E. Boudaren, Wanying Song, Y. Wu
{"title":"SAR图像无监督分割的高阶三元组CRF-Pcanet","authors":"Peng Zhang, Yinyin Jiang, Beibei Li, Ming Li, M. E. Boudaren, Wanying Song, Y. Wu","doi":"10.1109/IGARSS39084.2020.9324235","DOIUrl":null,"url":null,"abstract":"In this paper, we combine the modeling power of conditional random fields (CRF) model with the representation-learning ability of principal component analysis network (PCANet), and propose a high-order triplet CRF model, named as HOTCRF-PCANet, for unsupervised synthetic aperture radar (SAR) image segmentation. HOTCRF-PCANet introduces an auxiliary field to explicitly regulate label interactions of complex SAR image. In the label and auxiliary fields, HOTCRF-PCANet defines a discrete quadrilateral pairwise Markov fields (DQPMF) model, and thus constructs a high-order DQPMF potential to model the high-order label interactions in an unsupervised way. Additionally, HOTCRF-PCANet uses a product-of-expert (POE) potential to enforce the regions' labeling consistency for pixels within the weak-structured region. Moreover, HOTCRF-PCANet modifies PCANet into an unsupervised mode, i.e. UPCANet, automatically learns rich features of SAR image and constructs an UPCANet-based unary potential to predict the local class probability. The effectiveness of HOTCRF-PCANet is demonstrated by the application to the unsupervised segmentation of simulated and real SAR images.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Order Triplet CRF-Pcanet for Unsupervised Segmentation of SAR Image\",\"authors\":\"Peng Zhang, Yinyin Jiang, Beibei Li, Ming Li, M. E. Boudaren, Wanying Song, Y. Wu\",\"doi\":\"10.1109/IGARSS39084.2020.9324235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we combine the modeling power of conditional random fields (CRF) model with the representation-learning ability of principal component analysis network (PCANet), and propose a high-order triplet CRF model, named as HOTCRF-PCANet, for unsupervised synthetic aperture radar (SAR) image segmentation. HOTCRF-PCANet introduces an auxiliary field to explicitly regulate label interactions of complex SAR image. In the label and auxiliary fields, HOTCRF-PCANet defines a discrete quadrilateral pairwise Markov fields (DQPMF) model, and thus constructs a high-order DQPMF potential to model the high-order label interactions in an unsupervised way. Additionally, HOTCRF-PCANet uses a product-of-expert (POE) potential to enforce the regions' labeling consistency for pixels within the weak-structured region. Moreover, HOTCRF-PCANet modifies PCANet into an unsupervised mode, i.e. UPCANet, automatically learns rich features of SAR image and constructs an UPCANet-based unary potential to predict the local class probability. The effectiveness of HOTCRF-PCANet is demonstrated by the application to the unsupervised segmentation of simulated and real SAR images.\",\"PeriodicalId\":444267,\"journal\":{\"name\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS39084.2020.9324235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9324235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将条件随机场(CRF)模型的建模能力与主成分分析网络(PCANet)的表示学习能力相结合,提出了一种用于无监督合成孔径雷达(SAR)图像分割的高阶三重态CRF模型HOTCRF-PCANet。HOTCRF-PCANet引入一个辅助场来明确调节复杂SAR图像的标签相互作用。在标签和辅助领域,HOTCRF-PCANet定义了一个离散四边形对马尔可夫场(DQPMF)模型,从而构建了一个高阶DQPMF势,以无监督的方式对高阶标签相互作用进行建模。此外,HOTCRF-PCANet使用专家产品(POE)潜力来强制弱结构区域内像素的区域标记一致性。此外,HOTCRF-PCANet将PCANet修改为无监督模式,即UPCANet,自动学习SAR图像的丰富特征,并构建基于UPCANet的一元势来预测局部类概率。通过对模拟和真实SAR图像的无监督分割,验证了HOTCRF-PCANet算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Order Triplet CRF-Pcanet for Unsupervised Segmentation of SAR Image
In this paper, we combine the modeling power of conditional random fields (CRF) model with the representation-learning ability of principal component analysis network (PCANet), and propose a high-order triplet CRF model, named as HOTCRF-PCANet, for unsupervised synthetic aperture radar (SAR) image segmentation. HOTCRF-PCANet introduces an auxiliary field to explicitly regulate label interactions of complex SAR image. In the label and auxiliary fields, HOTCRF-PCANet defines a discrete quadrilateral pairwise Markov fields (DQPMF) model, and thus constructs a high-order DQPMF potential to model the high-order label interactions in an unsupervised way. Additionally, HOTCRF-PCANet uses a product-of-expert (POE) potential to enforce the regions' labeling consistency for pixels within the weak-structured region. Moreover, HOTCRF-PCANet modifies PCANet into an unsupervised mode, i.e. UPCANet, automatically learns rich features of SAR image and constructs an UPCANet-based unary potential to predict the local class probability. The effectiveness of HOTCRF-PCANet is demonstrated by the application to the unsupervised segmentation of simulated and real SAR images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信