{"title":"基于快速傅立叶级数- haar小波变换的癫痫发作自动分类新模型","authors":"P. Geetha, S. Nagarani","doi":"10.1166/jmihi.2021.3918","DOIUrl":null,"url":null,"abstract":"The disorder based on neurological can be considered as epilepsy that leads to the recurrent seizures in occurrence. The electronic characteristics of brain can be monitor by the electroencephalogram (EEG). It is most commonly used in the medical application. The function monitoring\n records can be non linear as well as non stationary functioning. The present work produce a novel methodology, it is depend on Fast Fourier series (FFS) and wavelet transform based on Haar. These methods are used for the various kinds of epileptic seizure the electroencephalogram based signal.\n The detection of boundary is occur by the representation of scale-space and it also adapted to the image segmentation of the spectrum depends on the FBSE that can be obtained with the electroencephalogram based signal and the purpose of the EWT is also used to attain the narrow sub band based\n signals. These image segmentation and classification process implementation by FPGA based microprocessor and systems. The FFS-HMT can produce the sub band signal from the Hilbert marginal spectrum it is represented as HMS. The HMS can be used to compute the line length and the entropy characteristics\n due to the corresponding various kinds of the level based oscillatory of the electroencephalogram signal. Here we apply the selected feature extraction depends on the ranking parallel vector. With the use of an electroencephalogram signal, the robust random forest is utilized to classify selected\n feature extraction in normal and epileptic participants. The assessment of performance based on classification can be measured in FPGA microprocessor the term of classification accuracy for different sample length of EEG. The current methodology aids neurologists in distinguishing between\n healthy and epileptic people using electroencephalogram signals.","PeriodicalId":393031,"journal":{"name":"J. Medical Imaging Health Informatics","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Model for Automatic Classification of the Epileptic Seizures Using Fast Fourier Series-Haar Wavelet Transform\",\"authors\":\"P. Geetha, S. Nagarani\",\"doi\":\"10.1166/jmihi.2021.3918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The disorder based on neurological can be considered as epilepsy that leads to the recurrent seizures in occurrence. The electronic characteristics of brain can be monitor by the electroencephalogram (EEG). It is most commonly used in the medical application. The function monitoring\\n records can be non linear as well as non stationary functioning. The present work produce a novel methodology, it is depend on Fast Fourier series (FFS) and wavelet transform based on Haar. These methods are used for the various kinds of epileptic seizure the electroencephalogram based signal.\\n The detection of boundary is occur by the representation of scale-space and it also adapted to the image segmentation of the spectrum depends on the FBSE that can be obtained with the electroencephalogram based signal and the purpose of the EWT is also used to attain the narrow sub band based\\n signals. These image segmentation and classification process implementation by FPGA based microprocessor and systems. The FFS-HMT can produce the sub band signal from the Hilbert marginal spectrum it is represented as HMS. The HMS can be used to compute the line length and the entropy characteristics\\n due to the corresponding various kinds of the level based oscillatory of the electroencephalogram signal. Here we apply the selected feature extraction depends on the ranking parallel vector. With the use of an electroencephalogram signal, the robust random forest is utilized to classify selected\\n feature extraction in normal and epileptic participants. The assessment of performance based on classification can be measured in FPGA microprocessor the term of classification accuracy for different sample length of EEG. The current methodology aids neurologists in distinguishing between\\n healthy and epileptic people using electroencephalogram signals.\",\"PeriodicalId\":393031,\"journal\":{\"name\":\"J. Medical Imaging Health Informatics\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Medical Imaging Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/jmihi.2021.3918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Medical Imaging Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jmihi.2021.3918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Novel Model for Automatic Classification of the Epileptic Seizures Using Fast Fourier Series-Haar Wavelet Transform
The disorder based on neurological can be considered as epilepsy that leads to the recurrent seizures in occurrence. The electronic characteristics of brain can be monitor by the electroencephalogram (EEG). It is most commonly used in the medical application. The function monitoring
records can be non linear as well as non stationary functioning. The present work produce a novel methodology, it is depend on Fast Fourier series (FFS) and wavelet transform based on Haar. These methods are used for the various kinds of epileptic seizure the electroencephalogram based signal.
The detection of boundary is occur by the representation of scale-space and it also adapted to the image segmentation of the spectrum depends on the FBSE that can be obtained with the electroencephalogram based signal and the purpose of the EWT is also used to attain the narrow sub band based
signals. These image segmentation and classification process implementation by FPGA based microprocessor and systems. The FFS-HMT can produce the sub band signal from the Hilbert marginal spectrum it is represented as HMS. The HMS can be used to compute the line length and the entropy characteristics
due to the corresponding various kinds of the level based oscillatory of the electroencephalogram signal. Here we apply the selected feature extraction depends on the ranking parallel vector. With the use of an electroencephalogram signal, the robust random forest is utilized to classify selected
feature extraction in normal and epileptic participants. The assessment of performance based on classification can be measured in FPGA microprocessor the term of classification accuracy for different sample length of EEG. The current methodology aids neurologists in distinguishing between
healthy and epileptic people using electroencephalogram signals.