有损图像压缩对生物识别系统精度的影响——以手部生物识别为例

Djamel Samai, A. Meraoumia, M. Bedda, A. Taleb-Ahmed
{"title":"有损图像压缩对生物识别系统精度的影响——以手部生物识别为例","authors":"Djamel Samai, A. Meraoumia, M. Bedda, A. Taleb-Ahmed","doi":"10.1504/IJCAET.2021.113543","DOIUrl":null,"url":null,"abstract":"Biometric recognition systems are used in several cases, to recognise people using images. Storing of large images require large storage space. To reduce the storage space, compression methods are employed. In this paper, we analyse the effect of lossy image compression on the performance of biometric identification systems. We propose a scheme to evaluate the recognition performance at low bitrates of hand images. The images are compressed using set partitioning in hierarchical trees (SPIHT) encoding. A powerful feature extraction algorithm based on quantising the phase information of the local Fourier transform is used. The nearest neighbour (NN) classifier and the support vector machine (SVM) classifier are employed to classify the feature extraction. The obtained results show at the compression does not significantly affect the performance of recognition operation at low bitrate for unimodal and multimodal systems. Thus, the low bitrate images perform equivalent to uncompressed images in the recognition system.","PeriodicalId":346646,"journal":{"name":"Int. J. Comput. Aided Eng. Technol.","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of the lossy image compression on the biometric system accuracy: a case study of hand biometrics\",\"authors\":\"Djamel Samai, A. Meraoumia, M. Bedda, A. Taleb-Ahmed\",\"doi\":\"10.1504/IJCAET.2021.113543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biometric recognition systems are used in several cases, to recognise people using images. Storing of large images require large storage space. To reduce the storage space, compression methods are employed. In this paper, we analyse the effect of lossy image compression on the performance of biometric identification systems. We propose a scheme to evaluate the recognition performance at low bitrates of hand images. The images are compressed using set partitioning in hierarchical trees (SPIHT) encoding. A powerful feature extraction algorithm based on quantising the phase information of the local Fourier transform is used. The nearest neighbour (NN) classifier and the support vector machine (SVM) classifier are employed to classify the feature extraction. The obtained results show at the compression does not significantly affect the performance of recognition operation at low bitrate for unimodal and multimodal systems. Thus, the low bitrate images perform equivalent to uncompressed images in the recognition system.\",\"PeriodicalId\":346646,\"journal\":{\"name\":\"Int. J. Comput. Aided Eng. Technol.\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Aided Eng. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCAET.2021.113543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Aided Eng. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCAET.2021.113543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物识别系统在一些情况下被用于通过图像识别人。存储大型图像需要较大的存储空间。为了减少存储空间,采用了压缩方法。本文分析了有损图像压缩对生物识别系统性能的影响。我们提出了一种评估低比特率手部图像识别性能的方案。图像使用分层树(SPIHT)编码的集合分区进行压缩。采用了一种功能强大的基于局部傅里叶变换相位信息量化的特征提取算法。采用最近邻(NN)分类器和支持向量机(SVM)分类器对特征提取进行分类。结果表明,压缩对单模态和多模态系统低比特率下的识别性能没有显著影响。因此,在识别系统中,低比特率图像的性能等同于未压缩图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of the lossy image compression on the biometric system accuracy: a case study of hand biometrics
Biometric recognition systems are used in several cases, to recognise people using images. Storing of large images require large storage space. To reduce the storage space, compression methods are employed. In this paper, we analyse the effect of lossy image compression on the performance of biometric identification systems. We propose a scheme to evaluate the recognition performance at low bitrates of hand images. The images are compressed using set partitioning in hierarchical trees (SPIHT) encoding. A powerful feature extraction algorithm based on quantising the phase information of the local Fourier transform is used. The nearest neighbour (NN) classifier and the support vector machine (SVM) classifier are employed to classify the feature extraction. The obtained results show at the compression does not significantly affect the performance of recognition operation at low bitrate for unimodal and multimodal systems. Thus, the low bitrate images perform equivalent to uncompressed images in the recognition system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信