{"title":"超图完美哈希方法的高效并行实现","authors":"Somesh Singh, B. Uçar","doi":"10.1109/IPDPSW55747.2022.00056","DOIUrl":null,"url":null,"abstract":"Querying the existence of an edge in a given graph or hypergraph is a building block in several algorithms. Hashing-based methods can be used for this purpose, where the given edges are stored in a hash table in a preprocessing step, and then the queries are answered using the lookup operations. While the general hashing methods have fast lookup times in the average case, the worst case run time is much higher. Perfect hashing methods take advantage of the fact that the items to be stored are all available and construct a collision free hash function for the given input, resulting in an optimal lookup time even in the worst case. We investigate an efficient shared-memory parallel implementation of a recently proposed perfect hashing method for hypergraphs. We experimentally compare the resulting parallel algorithms with the state-of-the-art and demonstrate better run time and scalability on a set of hypergraphs corresponding to real-life sparse tensors.","PeriodicalId":286968,"journal":{"name":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Efficient Parallel Implementation of a Perfect Hashing Method for Hypergraphs\",\"authors\":\"Somesh Singh, B. Uçar\",\"doi\":\"10.1109/IPDPSW55747.2022.00056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Querying the existence of an edge in a given graph or hypergraph is a building block in several algorithms. Hashing-based methods can be used for this purpose, where the given edges are stored in a hash table in a preprocessing step, and then the queries are answered using the lookup operations. While the general hashing methods have fast lookup times in the average case, the worst case run time is much higher. Perfect hashing methods take advantage of the fact that the items to be stored are all available and construct a collision free hash function for the given input, resulting in an optimal lookup time even in the worst case. We investigate an efficient shared-memory parallel implementation of a recently proposed perfect hashing method for hypergraphs. We experimentally compare the resulting parallel algorithms with the state-of-the-art and demonstrate better run time and scalability on a set of hypergraphs corresponding to real-life sparse tensors.\",\"PeriodicalId\":286968,\"journal\":{\"name\":\"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW55747.2022.00056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW55747.2022.00056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Efficient Parallel Implementation of a Perfect Hashing Method for Hypergraphs
Querying the existence of an edge in a given graph or hypergraph is a building block in several algorithms. Hashing-based methods can be used for this purpose, where the given edges are stored in a hash table in a preprocessing step, and then the queries are answered using the lookup operations. While the general hashing methods have fast lookup times in the average case, the worst case run time is much higher. Perfect hashing methods take advantage of the fact that the items to be stored are all available and construct a collision free hash function for the given input, resulting in an optimal lookup time even in the worst case. We investigate an efficient shared-memory parallel implementation of a recently proposed perfect hashing method for hypergraphs. We experimentally compare the resulting parallel algorithms with the state-of-the-art and demonstrate better run time and scalability on a set of hypergraphs corresponding to real-life sparse tensors.