{"title":"图像配准中矢量场法半线性高阶椭圆问题的可解性","authors":"Xiaojun Zheng, Zhongdan Huan, Jun Liu","doi":"10.3934/cpaa.2022068","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We study the existence of the solution to a semilinear higher-order elliptic system</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\mathcal{L}v(t, \\cdot) = F_{S, T}\\circ G(v)(t, \\cdot), \\quad \\forall t\\in [0, \\tau], $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>with the homogeneous Dirichlet boundary conditions. Here, <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\mathcal{L} = (-\\Delta)^m $\\end{document}</tex-math></inline-formula> is a harmonic operator of order <inline-formula><tex-math id=\"M2\">\\begin{document}$ m $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M3\">\\begin{document}$ v = v(t, x):[0, \\tau]\\times\\Omega\\rightarrow \\mathbb{R}^n $\\end{document}</tex-math></inline-formula> is the unknown, <inline-formula><tex-math id=\"M4\">\\begin{document}$ t $\\end{document}</tex-math></inline-formula> is a parameter, <inline-formula><tex-math id=\"M5\">\\begin{document}$ F_{S, T} $\\end{document}</tex-math></inline-formula> is a function related to given functions <inline-formula><tex-math id=\"M6\">\\begin{document}$ S $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M7\">\\begin{document}$ T $\\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id=\"M8\">\\begin{document}$ G(v)(t, x) $\\end{document}</tex-math></inline-formula> is defined by the solution <inline-formula><tex-math id=\"M9\">\\begin{document}$ y^v(s;t, x) $\\end{document}</tex-math></inline-formula> of an ODE-IVP <inline-formula><tex-math id=\"M10\">\\begin{document}$ {\\rm d}y/\\mathrm{d}s = v(s, y), \\quad y(t) = x $\\end{document}</tex-math></inline-formula>. The elliptic equations is the Euler-Lagrange equation of the vector field regularization model widely used in image registration. Although we have showed the existence of a solution to this BVP by the variational method, we hope to study it by the fixed point method further. This is mainly because the elliptic equations is novel in form, and the method here put more emphasis on the quantitative analysis whereas the variational method focus on the qualitative analysis. Since the system here is a higher order semilinear system, and its nonlinear term is dominated by an exponential function with respect to the unknown, we use an exponential inequality to construct a closed ball, and then apply the Schauder fixed point theorem to show the existence of a solution under some assumptions.</p>","PeriodicalId":435074,"journal":{"name":"Communications on Pure & Applied Analysis","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the solvability of a semilinear higher-order elliptic problem for the vector field method in image registration\",\"authors\":\"Xiaojun Zheng, Zhongdan Huan, Jun Liu\",\"doi\":\"10.3934/cpaa.2022068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>We study the existence of the solution to a semilinear higher-order elliptic system</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\\\"FE1\\\"> \\\\begin{document}$ \\\\mathcal{L}v(t, \\\\cdot) = F_{S, T}\\\\circ G(v)(t, \\\\cdot), \\\\quad \\\\forall t\\\\in [0, \\\\tau], $\\\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>with the homogeneous Dirichlet boundary conditions. Here, <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ \\\\mathcal{L} = (-\\\\Delta)^m $\\\\end{document}</tex-math></inline-formula> is a harmonic operator of order <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ m $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ v = v(t, x):[0, \\\\tau]\\\\times\\\\Omega\\\\rightarrow \\\\mathbb{R}^n $\\\\end{document}</tex-math></inline-formula> is the unknown, <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ t $\\\\end{document}</tex-math></inline-formula> is a parameter, <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ F_{S, T} $\\\\end{document}</tex-math></inline-formula> is a function related to given functions <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ S $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ T $\\\\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ G(v)(t, x) $\\\\end{document}</tex-math></inline-formula> is defined by the solution <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ y^v(s;t, x) $\\\\end{document}</tex-math></inline-formula> of an ODE-IVP <inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ {\\\\rm d}y/\\\\mathrm{d}s = v(s, y), \\\\quad y(t) = x $\\\\end{document}</tex-math></inline-formula>. The elliptic equations is the Euler-Lagrange equation of the vector field regularization model widely used in image registration. Although we have showed the existence of a solution to this BVP by the variational method, we hope to study it by the fixed point method further. This is mainly because the elliptic equations is novel in form, and the method here put more emphasis on the quantitative analysis whereas the variational method focus on the qualitative analysis. Since the system here is a higher order semilinear system, and its nonlinear term is dominated by an exponential function with respect to the unknown, we use an exponential inequality to construct a closed ball, and then apply the Schauder fixed point theorem to show the existence of a solution under some assumptions.</p>\",\"PeriodicalId\":435074,\"journal\":{\"name\":\"Communications on Pure & Applied Analysis\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure & Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/cpaa.2022068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure & Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2022068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
We study the existence of the solution to a semilinear higher-order elliptic system \begin{document}$ \mathcal{L}v(t, \cdot) = F_{S, T}\circ G(v)(t, \cdot), \quad \forall t\in [0, \tau], $\end{document} with the homogeneous Dirichlet boundary conditions. Here, \begin{document}$ \mathcal{L} = (-\Delta)^m $\end{document} is a harmonic operator of order \begin{document}$ m $\end{document}, \begin{document}$ v = v(t, x):[0, \tau]\times\Omega\rightarrow \mathbb{R}^n $\end{document} is the unknown, \begin{document}$ t $\end{document} is a parameter, \begin{document}$ F_{S, T} $\end{document} is a function related to given functions \begin{document}$ S $\end{document} and \begin{document}$ T $\end{document}, and \begin{document}$ G(v)(t, x) $\end{document} is defined by the solution \begin{document}$ y^v(s;t, x) $\end{document} of an ODE-IVP \begin{document}$ {\rm d}y/\mathrm{d}s = v(s, y), \quad y(t) = x $\end{document}. The elliptic equations is the Euler-Lagrange equation of the vector field regularization model widely used in image registration. Although we have showed the existence of a solution to this BVP by the variational method, we hope to study it by the fixed point method further. This is mainly because the elliptic equations is novel in form, and the method here put more emphasis on the quantitative analysis whereas the variational method focus on the qualitative analysis. Since the system here is a higher order semilinear system, and its nonlinear term is dominated by an exponential function with respect to the unknown, we use an exponential inequality to construct a closed ball, and then apply the Schauder fixed point theorem to show the existence of a solution under some assumptions.
with the homogeneous Dirichlet boundary conditions. Here, \begin{document}$ \mathcal{L} = (-\Delta)^m $\end{document} is a harmonic operator of order \begin{document}$ m $\end{document}, \begin{document}$ v = v(t, x):[0, \tau]\times\Omega\rightarrow \mathbb{R}^n $\end{document} is the unknown, \begin{document}$ t $\end{document} is a parameter, \begin{document}$ F_{S, T} $\end{document} is a function related to given functions \begin{document}$ S $\end{document} and \begin{document}$ T $\end{document}, and \begin{document}$ G(v)(t, x) $\end{document} is defined by the solution \begin{document}$ y^v(s;t, x) $\end{document} of an ODE-IVP \begin{document}$ {\rm d}y/\mathrm{d}s = v(s, y), \quad y(t) = x $\end{document}. The elliptic equations is the Euler-Lagrange equation of the vector field regularization model widely used in image registration. Although we have showed the existence of a solution to this BVP by the variational method, we hope to study it by the fixed point method further. This is mainly because the elliptic equations is novel in form, and the method here put more emphasis on the quantitative analysis whereas the variational method focus on the qualitative analysis. Since the system here is a higher order semilinear system, and its nonlinear term is dominated by an exponential function with respect to the unknown, we use an exponential inequality to construct a closed ball, and then apply the Schauder fixed point theorem to show the existence of a solution under some assumptions.