图像配准中矢量场法半线性高阶椭圆问题的可解性

Xiaojun Zheng, Zhongdan Huan, Jun Liu
{"title":"图像配准中矢量场法半线性高阶椭圆问题的可解性","authors":"Xiaojun Zheng, Zhongdan Huan, Jun Liu","doi":"10.3934/cpaa.2022068","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We study the existence of the solution to a semilinear higher-order elliptic system</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\mathcal{L}v(t, \\cdot) = F_{S, T}\\circ G(v)(t, \\cdot), \\quad \\forall t\\in [0, \\tau], $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>with the homogeneous Dirichlet boundary conditions. Here, <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\mathcal{L} = (-\\Delta)^m $\\end{document}</tex-math></inline-formula> is a harmonic operator of order <inline-formula><tex-math id=\"M2\">\\begin{document}$ m $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M3\">\\begin{document}$ v = v(t, x):[0, \\tau]\\times\\Omega\\rightarrow \\mathbb{R}^n $\\end{document}</tex-math></inline-formula> is the unknown, <inline-formula><tex-math id=\"M4\">\\begin{document}$ t $\\end{document}</tex-math></inline-formula> is a parameter, <inline-formula><tex-math id=\"M5\">\\begin{document}$ F_{S, T} $\\end{document}</tex-math></inline-formula> is a function related to given functions <inline-formula><tex-math id=\"M6\">\\begin{document}$ S $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M7\">\\begin{document}$ T $\\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id=\"M8\">\\begin{document}$ G(v)(t, x) $\\end{document}</tex-math></inline-formula> is defined by the solution <inline-formula><tex-math id=\"M9\">\\begin{document}$ y^v(s;t, x) $\\end{document}</tex-math></inline-formula> of an ODE-IVP <inline-formula><tex-math id=\"M10\">\\begin{document}$ {\\rm d}y/\\mathrm{d}s = v(s, y), \\quad y(t) = x $\\end{document}</tex-math></inline-formula>. The elliptic equations is the Euler-Lagrange equation of the vector field regularization model widely used in image registration. Although we have showed the existence of a solution to this BVP by the variational method, we hope to study it by the fixed point method further. This is mainly because the elliptic equations is novel in form, and the method here put more emphasis on the quantitative analysis whereas the variational method focus on the qualitative analysis. Since the system here is a higher order semilinear system, and its nonlinear term is dominated by an exponential function with respect to the unknown, we use an exponential inequality to construct a closed ball, and then apply the Schauder fixed point theorem to show the existence of a solution under some assumptions.</p>","PeriodicalId":435074,"journal":{"name":"Communications on Pure &amp; Applied Analysis","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the solvability of a semilinear higher-order elliptic problem for the vector field method in image registration\",\"authors\":\"Xiaojun Zheng, Zhongdan Huan, Jun Liu\",\"doi\":\"10.3934/cpaa.2022068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>We study the existence of the solution to a semilinear higher-order elliptic system</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\\\"FE1\\\"> \\\\begin{document}$ \\\\mathcal{L}v(t, \\\\cdot) = F_{S, T}\\\\circ G(v)(t, \\\\cdot), \\\\quad \\\\forall t\\\\in [0, \\\\tau], $\\\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>with the homogeneous Dirichlet boundary conditions. Here, <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ \\\\mathcal{L} = (-\\\\Delta)^m $\\\\end{document}</tex-math></inline-formula> is a harmonic operator of order <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ m $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ v = v(t, x):[0, \\\\tau]\\\\times\\\\Omega\\\\rightarrow \\\\mathbb{R}^n $\\\\end{document}</tex-math></inline-formula> is the unknown, <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ t $\\\\end{document}</tex-math></inline-formula> is a parameter, <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ F_{S, T} $\\\\end{document}</tex-math></inline-formula> is a function related to given functions <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ S $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ T $\\\\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ G(v)(t, x) $\\\\end{document}</tex-math></inline-formula> is defined by the solution <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ y^v(s;t, x) $\\\\end{document}</tex-math></inline-formula> of an ODE-IVP <inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ {\\\\rm d}y/\\\\mathrm{d}s = v(s, y), \\\\quad y(t) = x $\\\\end{document}</tex-math></inline-formula>. The elliptic equations is the Euler-Lagrange equation of the vector field regularization model widely used in image registration. Although we have showed the existence of a solution to this BVP by the variational method, we hope to study it by the fixed point method further. This is mainly because the elliptic equations is novel in form, and the method here put more emphasis on the quantitative analysis whereas the variational method focus on the qualitative analysis. Since the system here is a higher order semilinear system, and its nonlinear term is dominated by an exponential function with respect to the unknown, we use an exponential inequality to construct a closed ball, and then apply the Schauder fixed point theorem to show the existence of a solution under some assumptions.</p>\",\"PeriodicalId\":435074,\"journal\":{\"name\":\"Communications on Pure &amp; Applied Analysis\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure &amp; Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/cpaa.2022068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure &amp; Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2022068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

We study the existence of the solution to a semilinear higher-order elliptic system \begin{document}$ \mathcal{L}v(t, \cdot) = F_{S, T}\circ G(v)(t, \cdot), \quad \forall t\in [0, \tau], $\end{document} with the homogeneous Dirichlet boundary conditions. Here, \begin{document}$ \mathcal{L} = (-\Delta)^m $\end{document} is a harmonic operator of order \begin{document}$ m $\end{document}, \begin{document}$ v = v(t, x):[0, \tau]\times\Omega\rightarrow \mathbb{R}^n $\end{document} is the unknown, \begin{document}$ t $\end{document} is a parameter, \begin{document}$ F_{S, T} $\end{document} is a function related to given functions \begin{document}$ S $\end{document} and \begin{document}$ T $\end{document}, and \begin{document}$ G(v)(t, x) $\end{document} is defined by the solution \begin{document}$ y^v(s;t, x) $\end{document} of an ODE-IVP \begin{document}$ {\rm d}y/\mathrm{d}s = v(s, y), \quad y(t) = x $\end{document}. The elliptic equations is the Euler-Lagrange equation of the vector field regularization model widely used in image registration. Although we have showed the existence of a solution to this BVP by the variational method, we hope to study it by the fixed point method further. This is mainly because the elliptic equations is novel in form, and the method here put more emphasis on the quantitative analysis whereas the variational method focus on the qualitative analysis. Since the system here is a higher order semilinear system, and its nonlinear term is dominated by an exponential function with respect to the unknown, we use an exponential inequality to construct a closed ball, and then apply the Schauder fixed point theorem to show the existence of a solution under some assumptions.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the solvability of a semilinear higher-order elliptic problem for the vector field method in image registration

We study the existence of the solution to a semilinear higher-order elliptic system

with the homogeneous Dirichlet boundary conditions. Here, \begin{document}$ \mathcal{L} = (-\Delta)^m $\end{document} is a harmonic operator of order \begin{document}$ m $\end{document}, \begin{document}$ v = v(t, x):[0, \tau]\times\Omega\rightarrow \mathbb{R}^n $\end{document} is the unknown, \begin{document}$ t $\end{document} is a parameter, \begin{document}$ F_{S, T} $\end{document} is a function related to given functions \begin{document}$ S $\end{document} and \begin{document}$ T $\end{document}, and \begin{document}$ G(v)(t, x) $\end{document} is defined by the solution \begin{document}$ y^v(s;t, x) $\end{document} of an ODE-IVP \begin{document}$ {\rm d}y/\mathrm{d}s = v(s, y), \quad y(t) = x $\end{document}. The elliptic equations is the Euler-Lagrange equation of the vector field regularization model widely used in image registration. Although we have showed the existence of a solution to this BVP by the variational method, we hope to study it by the fixed point method further. This is mainly because the elliptic equations is novel in form, and the method here put more emphasis on the quantitative analysis whereas the variational method focus on the qualitative analysis. Since the system here is a higher order semilinear system, and its nonlinear term is dominated by an exponential function with respect to the unknown, we use an exponential inequality to construct a closed ball, and then apply the Schauder fixed point theorem to show the existence of a solution under some assumptions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信