T. Manning, T. Hardy, M. Merklein, M. Wintrebert-Fouquet, M. Phillips
{"title":"低能电子束辐照氮化镓中Mg受体活化的机制","authors":"T. Manning, T. Hardy, M. Merklein, M. Wintrebert-Fouquet, M. Phillips","doi":"10.1109/COMMAD.2010.5699705","DOIUrl":null,"url":null,"abstract":"Low Energy Electron Beam Irradiation (LEEBI) was found to quench the donor-acceptor pair (DAP) attributed to carbon (CN at 3.28 eV at 80 K) and enhances the emission of the 3.27 eV peak, which has been attributed to a free-to-bound (e,Mg0) transition at 300 K. This results in increased cathodoluminescence (CL) emission at room temperature and a decrease in CL emission at liquid nitrogen temperatures (∼77 K).","PeriodicalId":129653,"journal":{"name":"2010 Conference on Optoelectronic and Microelectronic Materials and Devices","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Mechanism for Mg acceptor activation in GaN by Low Energy Electron Beam Irradiation\",\"authors\":\"T. Manning, T. Hardy, M. Merklein, M. Wintrebert-Fouquet, M. Phillips\",\"doi\":\"10.1109/COMMAD.2010.5699705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low Energy Electron Beam Irradiation (LEEBI) was found to quench the donor-acceptor pair (DAP) attributed to carbon (CN at 3.28 eV at 80 K) and enhances the emission of the 3.27 eV peak, which has been attributed to a free-to-bound (e,Mg0) transition at 300 K. This results in increased cathodoluminescence (CL) emission at room temperature and a decrease in CL emission at liquid nitrogen temperatures (∼77 K).\",\"PeriodicalId\":129653,\"journal\":{\"name\":\"2010 Conference on Optoelectronic and Microelectronic Materials and Devices\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Conference on Optoelectronic and Microelectronic Materials and Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMMAD.2010.5699705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Conference on Optoelectronic and Microelectronic Materials and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMMAD.2010.5699705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Mechanism for Mg acceptor activation in GaN by Low Energy Electron Beam Irradiation
Low Energy Electron Beam Irradiation (LEEBI) was found to quench the donor-acceptor pair (DAP) attributed to carbon (CN at 3.28 eV at 80 K) and enhances the emission of the 3.27 eV peak, which has been attributed to a free-to-bound (e,Mg0) transition at 300 K. This results in increased cathodoluminescence (CL) emission at room temperature and a decrease in CL emission at liquid nitrogen temperatures (∼77 K).