ASIC FHE加速器模块乘法器的设计空间探索

Deepraj Soni, M. Nabeel, Homer Gamil, O. Mazonka, Brandon Reagen, R. Karri, M. Maniatakos
{"title":"ASIC FHE加速器模块乘法器的设计空间探索","authors":"Deepraj Soni, M. Nabeel, Homer Gamil, O. Mazonka, Brandon Reagen, R. Karri, M. Maniatakos","doi":"10.1109/ISQED57927.2023.10129292","DOIUrl":null,"url":null,"abstract":"Fully homomorphic encryption (FHE) promises data protection by computation on encrypted data, but demands resource-intensive computation. The most fundamental resource of FHE is modular multiplier, which needs to be evaluated for efficient implementation. In this work, we develop and evaluate ASIC implementations of the modular multiplier at the block-level and at the system-level. We study the efficiency of the multipliers in terms of performance-for-area and performance-for-power. Since these ASICs are used in FHE, we explore these multipliers within this system-level context with on-chip memory and interconnect limits. We explore ASIC implementations of modular multiplications using a state-of-the-art 22nm technology node with constant operand throughput to ensure a fair comparison. The study yields key insights about the performance-for-area efficiency and power efficiency of bit-serial and bit-parallel designs: Bit-parallel designs are more efficient than their bitserial counterparts. Montgomery multipliers with constrained modulus are the most power-efficient and area-efficient design. Iterative Montgomery multipliers incur minimum peak power for a polynomial multiplication, making them suitable for low-power voltage sources.","PeriodicalId":315053,"journal":{"name":"2023 24th International Symposium on Quality Electronic Design (ISQED)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design Space Exploration of Modular Multipliers for ASIC FHE accelerators\",\"authors\":\"Deepraj Soni, M. Nabeel, Homer Gamil, O. Mazonka, Brandon Reagen, R. Karri, M. Maniatakos\",\"doi\":\"10.1109/ISQED57927.2023.10129292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fully homomorphic encryption (FHE) promises data protection by computation on encrypted data, but demands resource-intensive computation. The most fundamental resource of FHE is modular multiplier, which needs to be evaluated for efficient implementation. In this work, we develop and evaluate ASIC implementations of the modular multiplier at the block-level and at the system-level. We study the efficiency of the multipliers in terms of performance-for-area and performance-for-power. Since these ASICs are used in FHE, we explore these multipliers within this system-level context with on-chip memory and interconnect limits. We explore ASIC implementations of modular multiplications using a state-of-the-art 22nm technology node with constant operand throughput to ensure a fair comparison. The study yields key insights about the performance-for-area efficiency and power efficiency of bit-serial and bit-parallel designs: Bit-parallel designs are more efficient than their bitserial counterparts. Montgomery multipliers with constrained modulus are the most power-efficient and area-efficient design. Iterative Montgomery multipliers incur minimum peak power for a polynomial multiplication, making them suitable for low-power voltage sources.\",\"PeriodicalId\":315053,\"journal\":{\"name\":\"2023 24th International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 24th International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED57927.2023.10129292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 24th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED57927.2023.10129292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

完全同态加密(FHE)承诺通过对加密数据的计算来保护数据,但需要大量的资源计算。FHE最基本的资源是模块乘法器,需要对其进行评估才能有效地实现。在这项工作中,我们在块级和系统级开发和评估模块化乘法器的ASIC实现。我们从面积性能和功率性能两方面研究了乘数器的效率。由于这些asic用于FHE,我们在片上存储器和互连限制的系统级上下文中探索这些乘法器。我们探索模块化乘法的ASIC实现,使用最先进的22nm技术节点,具有恒定的操作数吞吐量,以确保公平的比较。该研究对位串行和位并行设计的面积效率和功率效率产生了关键见解:位并行设计比位串行设计更有效。具有约束模量的Montgomery乘法器是最节能和面积有效的设计。迭代蒙哥马利乘法器产生多项式乘法的最小峰值功率,使它们适合于低功率电压源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design Space Exploration of Modular Multipliers for ASIC FHE accelerators
Fully homomorphic encryption (FHE) promises data protection by computation on encrypted data, but demands resource-intensive computation. The most fundamental resource of FHE is modular multiplier, which needs to be evaluated for efficient implementation. In this work, we develop and evaluate ASIC implementations of the modular multiplier at the block-level and at the system-level. We study the efficiency of the multipliers in terms of performance-for-area and performance-for-power. Since these ASICs are used in FHE, we explore these multipliers within this system-level context with on-chip memory and interconnect limits. We explore ASIC implementations of modular multiplications using a state-of-the-art 22nm technology node with constant operand throughput to ensure a fair comparison. The study yields key insights about the performance-for-area efficiency and power efficiency of bit-serial and bit-parallel designs: Bit-parallel designs are more efficient than their bitserial counterparts. Montgomery multipliers with constrained modulus are the most power-efficient and area-efficient design. Iterative Montgomery multipliers incur minimum peak power for a polynomial multiplication, making them suitable for low-power voltage sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信