{"title":"通过简化和绕过琐碎的计算来提高处理器性能","authors":"J. Yi, D. Lilja","doi":"10.1109/ICCD.2002.1106814","DOIUrl":null,"url":null,"abstract":"During the course of a program's execution, a processor performs mangy trivial computations; that is, computations that can be simplified or where the result is zero, one, or equal to one of the input operands. This paper shows that, despite compiling a program with aggressive optimizations (-O3), approximately 30% of all arithmetic instructions, which account for 12% of all dynamic instructions, are trivial computations. The amount of trivial computation is not heavily dependent on the program's specific input values. Our results show that eliminating trivial computations dynamically at run-time yields an average speedup of 8% for a typical processor. Even for a very aggressive processor (i.e. one with no functional unit constraints), the average speedup is still 6%. It also is important to note that the area cost (i.e. hardware) required to dynamically detect and eliminate these trivial computations is very low, consisting of only a few comparators and multiplexers.","PeriodicalId":164768,"journal":{"name":"Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors","volume":"42 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Improving processor performance by simplifying and bypassing trivial computations\",\"authors\":\"J. Yi, D. Lilja\",\"doi\":\"10.1109/ICCD.2002.1106814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the course of a program's execution, a processor performs mangy trivial computations; that is, computations that can be simplified or where the result is zero, one, or equal to one of the input operands. This paper shows that, despite compiling a program with aggressive optimizations (-O3), approximately 30% of all arithmetic instructions, which account for 12% of all dynamic instructions, are trivial computations. The amount of trivial computation is not heavily dependent on the program's specific input values. Our results show that eliminating trivial computations dynamically at run-time yields an average speedup of 8% for a typical processor. Even for a very aggressive processor (i.e. one with no functional unit constraints), the average speedup is still 6%. It also is important to note that the area cost (i.e. hardware) required to dynamically detect and eliminate these trivial computations is very low, consisting of only a few comparators and multiplexers.\",\"PeriodicalId\":164768,\"journal\":{\"name\":\"Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors\",\"volume\":\"42 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2002.1106814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2002.1106814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving processor performance by simplifying and bypassing trivial computations
During the course of a program's execution, a processor performs mangy trivial computations; that is, computations that can be simplified or where the result is zero, one, or equal to one of the input operands. This paper shows that, despite compiling a program with aggressive optimizations (-O3), approximately 30% of all arithmetic instructions, which account for 12% of all dynamic instructions, are trivial computations. The amount of trivial computation is not heavily dependent on the program's specific input values. Our results show that eliminating trivial computations dynamically at run-time yields an average speedup of 8% for a typical processor. Even for a very aggressive processor (i.e. one with no functional unit constraints), the average speedup is still 6%. It also is important to note that the area cost (i.e. hardware) required to dynamically detect and eliminate these trivial computations is very low, consisting of only a few comparators and multiplexers.