在数字人文书籍,文章和博客书目参考书目的自动注释

Young-Min Kim, P. Bellot, Elodie Faath, Marin Dacos
{"title":"在数字人文书籍,文章和博客书目参考书目的自动注释","authors":"Young-Min Kim, P. Bellot, Elodie Faath, Marin Dacos","doi":"10.1145/2064058.2064068","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with the problem of extracting and processing useful information from bibliographic references in Digital Humanities (DH) data. A machine learning technique for sequential data analysis, Conditional Random Field is applied to a corpus extracted from OpenEdition site, a web platform for journals and book collections in the humanities and social sciences. We present our ongoing project with this purpose that includes the construction of a proper corpus and a efficient CRF model on this as a preliminary. This project is supported by Google Grant for Digital Humanities. A number of experiments are conducted to find one of the best settings for a CRF model on the corpus, and we verify them both in an automatic and manual way of evaluation.","PeriodicalId":258166,"journal":{"name":"Workshop on Research Advances in Large Digital Book Repositories","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Automatic annotation of bibliographical references in digital humanities books, articles and blogs\",\"authors\":\"Young-Min Kim, P. Bellot, Elodie Faath, Marin Dacos\",\"doi\":\"10.1145/2064058.2064068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we deal with the problem of extracting and processing useful information from bibliographic references in Digital Humanities (DH) data. A machine learning technique for sequential data analysis, Conditional Random Field is applied to a corpus extracted from OpenEdition site, a web platform for journals and book collections in the humanities and social sciences. We present our ongoing project with this purpose that includes the construction of a proper corpus and a efficient CRF model on this as a preliminary. This project is supported by Google Grant for Digital Humanities. A number of experiments are conducted to find one of the best settings for a CRF model on the corpus, and we verify them both in an automatic and manual way of evaluation.\",\"PeriodicalId\":258166,\"journal\":{\"name\":\"Workshop on Research Advances in Large Digital Book Repositories\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Research Advances in Large Digital Book Repositories\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2064058.2064068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Research Advances in Large Digital Book Repositories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2064058.2064068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

本文研究了数字人文学科(DH)数据中书目参考信息的提取和处理问题。一种用于顺序数据分析的机器学习技术,条件随机场应用于从OpenEdition网站提取的语料库,该网站是人文和社会科学期刊和图书收藏的网络平台。我们提出了我们正在进行的项目,其中包括构建一个适当的语料库和一个有效的CRF模型,作为初步的目的。该项目由谷歌数字人文科学基金支持。为了在语料库上找到一个最佳的CRF模型设置,我们进行了大量的实验,并以自动和手动的评估方式对它们进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic annotation of bibliographical references in digital humanities books, articles and blogs
In this paper, we deal with the problem of extracting and processing useful information from bibliographic references in Digital Humanities (DH) data. A machine learning technique for sequential data analysis, Conditional Random Field is applied to a corpus extracted from OpenEdition site, a web platform for journals and book collections in the humanities and social sciences. We present our ongoing project with this purpose that includes the construction of a proper corpus and a efficient CRF model on this as a preliminary. This project is supported by Google Grant for Digital Humanities. A number of experiments are conducted to find one of the best settings for a CRF model on the corpus, and we verify them both in an automatic and manual way of evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信