基于ecg的心律失常检测混合深度学习模型

Amina Ashfaq, N. Anjum, Salman Ahmed, Nayyer Masood
{"title":"基于ecg的心律失常检测混合深度学习模型","authors":"Amina Ashfaq, N. Anjum, Salman Ahmed, Nayyer Masood","doi":"10.1109/FIT57066.2022.00058","DOIUrl":null,"url":null,"abstract":"AI technologies can assist doctors and paramedic staff in identifying cardiovascular diseases such as arrhythmia. Over the last decade, an increase in wearable ECG devices has surfaced in the market which has generated huge data sets that can potentially be used for the early detection and classification of arrhythmia. In this work, a hybrid model is proposed for ECG signal analysis to classify SVEB and VEB arrhythmia classes. The proposed model is evaluated on the MIT-BIH arrhythmia database and compared with state-of-the-art approaches. The proposed model outperformed the existing approaches for SVEB and VEB arrhythmia.","PeriodicalId":102958,"journal":{"name":"2022 International Conference on Frontiers of Information Technology (FIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Deep Learning model for ECG-based Arrhythmia Detection\",\"authors\":\"Amina Ashfaq, N. Anjum, Salman Ahmed, Nayyer Masood\",\"doi\":\"10.1109/FIT57066.2022.00058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AI technologies can assist doctors and paramedic staff in identifying cardiovascular diseases such as arrhythmia. Over the last decade, an increase in wearable ECG devices has surfaced in the market which has generated huge data sets that can potentially be used for the early detection and classification of arrhythmia. In this work, a hybrid model is proposed for ECG signal analysis to classify SVEB and VEB arrhythmia classes. The proposed model is evaluated on the MIT-BIH arrhythmia database and compared with state-of-the-art approaches. The proposed model outperformed the existing approaches for SVEB and VEB arrhythmia.\",\"PeriodicalId\":102958,\"journal\":{\"name\":\"2022 International Conference on Frontiers of Information Technology (FIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Frontiers of Information Technology (FIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FIT57066.2022.00058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Frontiers of Information Technology (FIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FIT57066.2022.00058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能技术可以帮助医生和护理人员识别心律失常等心血管疾病。在过去的十年中,市场上出现了可穿戴ECG设备的增加,这产生了巨大的数据集,可以用于心律失常的早期检测和分类。在这项工作中,提出了一种用于心电信号分析的混合模型来划分SVEB和VEB心律失常的类别。该模型在MIT-BIH心律失常数据库上进行了评估,并与最先进的方法进行了比较。该模型优于现有的SVEB和VEB心律失常方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Deep Learning model for ECG-based Arrhythmia Detection
AI technologies can assist doctors and paramedic staff in identifying cardiovascular diseases such as arrhythmia. Over the last decade, an increase in wearable ECG devices has surfaced in the market which has generated huge data sets that can potentially be used for the early detection and classification of arrhythmia. In this work, a hybrid model is proposed for ECG signal analysis to classify SVEB and VEB arrhythmia classes. The proposed model is evaluated on the MIT-BIH arrhythmia database and compared with state-of-the-art approaches. The proposed model outperformed the existing approaches for SVEB and VEB arrhythmia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信