套接字间受害者缓存平台功率降低

Subhra Mazumdar, D. Tullsen, Justin J. Song
{"title":"套接字间受害者缓存平台功率降低","authors":"Subhra Mazumdar, D. Tullsen, Justin J. Song","doi":"10.1109/ICCD.2010.5647634","DOIUrl":null,"url":null,"abstract":"On a multi-socket architecture with load below peak, as is often the case in a server installation, it is common to consolidate load onto fewer sockets to save processor power. However, this can increase main memory power consumption due to the decreased total cache space. This paper describes inter-socket victim cacheing, a technique that enables such a system to do both load consolidation and cache aggregation at the same time. It uses the last level cache of an idle processor in a connected socket as a victim cache, holding evicted data from the active processor. This enables expensive main memory accesses to be replaced by cheaper cache hits. This work examines both static and dynamic victim cache management policies. Energy savings is as high as 32.5%, and averages 5.8%.","PeriodicalId":182350,"journal":{"name":"2010 IEEE International Conference on Computer Design","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inter-socket victim cacheing for platform power reduction\",\"authors\":\"Subhra Mazumdar, D. Tullsen, Justin J. Song\",\"doi\":\"10.1109/ICCD.2010.5647634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On a multi-socket architecture with load below peak, as is often the case in a server installation, it is common to consolidate load onto fewer sockets to save processor power. However, this can increase main memory power consumption due to the decreased total cache space. This paper describes inter-socket victim cacheing, a technique that enables such a system to do both load consolidation and cache aggregation at the same time. It uses the last level cache of an idle processor in a connected socket as a victim cache, holding evicted data from the active processor. This enables expensive main memory accesses to be replaced by cheaper cache hits. This work examines both static and dynamic victim cache management policies. Energy savings is as high as 32.5%, and averages 5.8%.\",\"PeriodicalId\":182350,\"journal\":{\"name\":\"2010 IEEE International Conference on Computer Design\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Computer Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2010.5647634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2010.5647634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在负载低于峰值的多套接字体系结构上(服务器安装中经常出现这种情况),通常将负载整合到更少的套接字上以节省处理器功率。但是,由于总缓存空间的减少,这会增加主内存功耗。本文描述了套接字间受害者缓存,这是一种使系统能够同时进行负载整合和缓存聚合的技术。它使用连接套接字中空闲处理器的最后一级缓存作为受害者缓存,保存从活动处理器驱逐的数据。这使得昂贵的主存访问可以被更便宜的缓存访问所取代。这项工作检查静态和动态受害者缓存管理策略。节能高达32.5%,平均节能5.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inter-socket victim cacheing for platform power reduction
On a multi-socket architecture with load below peak, as is often the case in a server installation, it is common to consolidate load onto fewer sockets to save processor power. However, this can increase main memory power consumption due to the decreased total cache space. This paper describes inter-socket victim cacheing, a technique that enables such a system to do both load consolidation and cache aggregation at the same time. It uses the last level cache of an idle processor in a connected socket as a victim cache, holding evicted data from the active processor. This enables expensive main memory accesses to be replaced by cheaper cache hits. This work examines both static and dynamic victim cache management policies. Energy savings is as high as 32.5%, and averages 5.8%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信