用于叶绿素-a预测的进化神经网络

X. Yao, Yong Liu
{"title":"用于叶绿素-a预测的进化神经网络","authors":"X. Yao, Yong Liu","doi":"10.1109/ICCIMA.2001.970465","DOIUrl":null,"url":null,"abstract":"The paper studies the application of evolutionary artificial neural networks to chlorophyll-a prediction in Lake Kasumigaura (in Japan). Unlike previous applications of artificial neural networks in this field, the architecture of the artificial neural network is evolved automatically rather than designed manually. The evolutionary system is able to find a near optimal architecture of the artificial neural network for the prediction task. Our experimental results have shown that evolved artificial neural networks are very compact and generalise well. The evolutionary system is able to explore a large space of possible artificial neural networks and discover novel artificial neural networks for solving a problem.","PeriodicalId":232504,"journal":{"name":"Proceedings Fourth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2001","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Evolving neural networks for chlorophyll-a prediction\",\"authors\":\"X. Yao, Yong Liu\",\"doi\":\"10.1109/ICCIMA.2001.970465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper studies the application of evolutionary artificial neural networks to chlorophyll-a prediction in Lake Kasumigaura (in Japan). Unlike previous applications of artificial neural networks in this field, the architecture of the artificial neural network is evolved automatically rather than designed manually. The evolutionary system is able to find a near optimal architecture of the artificial neural network for the prediction task. Our experimental results have shown that evolved artificial neural networks are very compact and generalise well. The evolutionary system is able to explore a large space of possible artificial neural networks and discover novel artificial neural networks for solving a problem.\",\"PeriodicalId\":232504,\"journal\":{\"name\":\"Proceedings Fourth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2001\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Fourth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2001\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIMA.2001.970465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fourth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIMA.2001.970465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文研究了进化人工神经网络在日本霞aura湖叶绿素a预测中的应用。与以往人工神经网络在该领域的应用不同,人工神经网络的架构是自动进化的,而不是人工设计的。进化系统能够为预测任务找到接近最优的人工神经网络结构。实验结果表明,进化后的人工神经网络结构紧凑,具有良好的泛化能力。进化系统能够探索大量可能的人工神经网络,并发现新的人工神经网络来解决问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolving neural networks for chlorophyll-a prediction
The paper studies the application of evolutionary artificial neural networks to chlorophyll-a prediction in Lake Kasumigaura (in Japan). Unlike previous applications of artificial neural networks in this field, the architecture of the artificial neural network is evolved automatically rather than designed manually. The evolutionary system is able to find a near optimal architecture of the artificial neural network for the prediction task. Our experimental results have shown that evolved artificial neural networks are very compact and generalise well. The evolutionary system is able to explore a large space of possible artificial neural networks and discover novel artificial neural networks for solving a problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信