Yoshiteru Yoshida, Toshihiro Hayashi, Hirotaka Kusabe, T. Kyunai, K. Usui, H. Yajima, K. Hirose, T. Aoki, D. Stanzione
{"title":"得克萨斯州380vdc供电系统与太阳能发电系统互联的节能效果","authors":"Yoshiteru Yoshida, Toshihiro Hayashi, Hirotaka Kusabe, T. Kyunai, K. Usui, H. Yajima, K. Hirose, T. Aoki, D. Stanzione","doi":"10.1109/INTLEC.2017.8214133","DOIUrl":null,"url":null,"abstract":"Power consumption of ICT facilities and data centers has grown, and this has led to a need to improve energy efficiency of these facilities. DC power distribution systems employing 380VDC as the supply voltage is one promising approach to address this problem for countries around the world developing and deploying commercial services. We demonstrated a 380VDC power distribution system interconnected with a solar power generation system in Texas, USA. The purpose of this demonstration was to show that a 380VDC power supply system saves more energy than an AC power supply system, and to show how much carbon dioxide emissions can be reduced by integrating a solar power generation system. This demonstration resulted in an approximate 17% energy reduction compared with an AC power supply system having the same level of reliability. Also, an evaluation using Data center Performance Per Energy (DPPE) as a performance index of the efficiency of data centers was carried out. The results showed that Power Usage Effectiveness (PUE), one of the sub-metrics of DPPE, improved with the 380VDC power supply system compared with the AC power supply system.","PeriodicalId":366207,"journal":{"name":"2017 IEEE International Telecommunications Energy Conference (INTELEC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Energy-saving effects by using 380vdc power supply system interconnected with a solar power generation system in texas\",\"authors\":\"Yoshiteru Yoshida, Toshihiro Hayashi, Hirotaka Kusabe, T. Kyunai, K. Usui, H. Yajima, K. Hirose, T. Aoki, D. Stanzione\",\"doi\":\"10.1109/INTLEC.2017.8214133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power consumption of ICT facilities and data centers has grown, and this has led to a need to improve energy efficiency of these facilities. DC power distribution systems employing 380VDC as the supply voltage is one promising approach to address this problem for countries around the world developing and deploying commercial services. We demonstrated a 380VDC power distribution system interconnected with a solar power generation system in Texas, USA. The purpose of this demonstration was to show that a 380VDC power supply system saves more energy than an AC power supply system, and to show how much carbon dioxide emissions can be reduced by integrating a solar power generation system. This demonstration resulted in an approximate 17% energy reduction compared with an AC power supply system having the same level of reliability. Also, an evaluation using Data center Performance Per Energy (DPPE) as a performance index of the efficiency of data centers was carried out. The results showed that Power Usage Effectiveness (PUE), one of the sub-metrics of DPPE, improved with the 380VDC power supply system compared with the AC power supply system.\",\"PeriodicalId\":366207,\"journal\":{\"name\":\"2017 IEEE International Telecommunications Energy Conference (INTELEC)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Telecommunications Energy Conference (INTELEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTLEC.2017.8214133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Telecommunications Energy Conference (INTELEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTLEC.2017.8214133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy-saving effects by using 380vdc power supply system interconnected with a solar power generation system in texas
Power consumption of ICT facilities and data centers has grown, and this has led to a need to improve energy efficiency of these facilities. DC power distribution systems employing 380VDC as the supply voltage is one promising approach to address this problem for countries around the world developing and deploying commercial services. We demonstrated a 380VDC power distribution system interconnected with a solar power generation system in Texas, USA. The purpose of this demonstration was to show that a 380VDC power supply system saves more energy than an AC power supply system, and to show how much carbon dioxide emissions can be reduced by integrating a solar power generation system. This demonstration resulted in an approximate 17% energy reduction compared with an AC power supply system having the same level of reliability. Also, an evaluation using Data center Performance Per Energy (DPPE) as a performance index of the efficiency of data centers was carried out. The results showed that Power Usage Effectiveness (PUE), one of the sub-metrics of DPPE, improved with the 380VDC power supply system compared with the AC power supply system.