在线社交网络中的熟悉陌生人检测

Charles Perez, B. Birregah, Marc Lemercier
{"title":"在线社交网络中的熟悉陌生人检测","authors":"Charles Perez, B. Birregah, Marc Lemercier","doi":"10.1145/2492517.2500233","DOIUrl":null,"url":null,"abstract":"Online social networks and microblogging platforms have collected a huge number of users this last decade. On such platforms, traces of activities are automatically recorded and stored on remote servers. Open data deriving from these traces of interactions represent a major opportunity for social network analysis and mining. This leads to important challenges when trying to understand and analyse these large-scale networks better. Recently, many sociological concepts such as friendship, community, trust and reputation have been transposed and integrated into online social networks. The recent success of mobile social networks and the increasing number of nomadic users of online social networks can contribute to extending the scope of these concepts. In this paper, we transpose the notion of the Familiar Stranger, which is a sociological concept introduced by Stanley Milgram. We propose a framework particularly adapted to online platforms that allows this concept to be defined. Various application fields may be considered: entertainment, services, homeland security, etc. To perform the detection task, we address the concept of familiarity based on spatio-temporal and attribute similarities. The paper ends with a case study of the well-known microblogging platform Twitter.","PeriodicalId":442230,"journal":{"name":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Familiar Strangers detection in online social networks\",\"authors\":\"Charles Perez, B. Birregah, Marc Lemercier\",\"doi\":\"10.1145/2492517.2500233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online social networks and microblogging platforms have collected a huge number of users this last decade. On such platforms, traces of activities are automatically recorded and stored on remote servers. Open data deriving from these traces of interactions represent a major opportunity for social network analysis and mining. This leads to important challenges when trying to understand and analyse these large-scale networks better. Recently, many sociological concepts such as friendship, community, trust and reputation have been transposed and integrated into online social networks. The recent success of mobile social networks and the increasing number of nomadic users of online social networks can contribute to extending the scope of these concepts. In this paper, we transpose the notion of the Familiar Stranger, which is a sociological concept introduced by Stanley Milgram. We propose a framework particularly adapted to online platforms that allows this concept to be defined. Various application fields may be considered: entertainment, services, homeland security, etc. To perform the detection task, we address the concept of familiarity based on spatio-temporal and attribute similarities. The paper ends with a case study of the well-known microblogging platform Twitter.\",\"PeriodicalId\":442230,\"journal\":{\"name\":\"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2492517.2500233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2492517.2500233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在线社交网络和微博平台在过去十年里聚集了大量用户。在这样的平台上,活动的痕迹被自动记录并存储在远程服务器上。从这些互动痕迹中产生的开放数据为社会网络分析和挖掘提供了一个重要的机会。当试图更好地理解和分析这些大规模网络时,这就带来了重要的挑战。最近,许多社会学概念,如友谊、社区、信任和声誉,都被转移并融入到在线社交网络中。最近移动社交网络的成功以及在线社交网络中越来越多的游民可以扩展这些概念的范围。本文对斯坦利·米尔格拉姆提出的社会学概念“熟悉的陌生人”进行了换位思考。我们提出了一个特别适合在线平台的框架,允许定义这一概念。各种应用领域可以考虑:娱乐,服务,国土安全等。为了完成检测任务,我们解决了基于时空和属性相似性的熟悉度概念。本文最后以知名微博平台Twitter为例进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Familiar Strangers detection in online social networks
Online social networks and microblogging platforms have collected a huge number of users this last decade. On such platforms, traces of activities are automatically recorded and stored on remote servers. Open data deriving from these traces of interactions represent a major opportunity for social network analysis and mining. This leads to important challenges when trying to understand and analyse these large-scale networks better. Recently, many sociological concepts such as friendship, community, trust and reputation have been transposed and integrated into online social networks. The recent success of mobile social networks and the increasing number of nomadic users of online social networks can contribute to extending the scope of these concepts. In this paper, we transpose the notion of the Familiar Stranger, which is a sociological concept introduced by Stanley Milgram. We propose a framework particularly adapted to online platforms that allows this concept to be defined. Various application fields may be considered: entertainment, services, homeland security, etc. To perform the detection task, we address the concept of familiarity based on spatio-temporal and attribute similarities. The paper ends with a case study of the well-known microblogging platform Twitter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信