关于说话人化的Fisher线性半判别分析的推广

S. Montazzolli, Andre Gustavo Adami, D. Barone
{"title":"关于说话人化的Fisher线性半判别分析的推广","authors":"S. Montazzolli, Andre Gustavo Adami, D. Barone","doi":"10.1109/ITS.2014.6947969","DOIUrl":null,"url":null,"abstract":"The Fisher Linear Semi-Discriminant Analysis is used in Speaker Diarization to project acoustic features into a discriminant and lower dimensional space. Given that such analysis uses short segments to estimate the scatter matrices, the projection could be improved by using longer segments (i.e., more information). Since a change of speaker is more likely to occur during periods of non-speech, we propose to use segments of speech produced by the boundaries estimated from a voice activity detection method based on Hidden Markov Models. Using datasets from the NIST Speaker Recognition Evaluations, we show that the estimated segments provide a better scatter matrices for the analysis. The results show a relative improvement of 21% in the Speaker Error Time on the Switchboard corpus used in the evaluations.","PeriodicalId":359348,"journal":{"name":"2014 International Telecommunications Symposium (ITS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An extension to Fisher Linear Semi-Discriminant analysis for Speaker Diarization\",\"authors\":\"S. Montazzolli, Andre Gustavo Adami, D. Barone\",\"doi\":\"10.1109/ITS.2014.6947969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Fisher Linear Semi-Discriminant Analysis is used in Speaker Diarization to project acoustic features into a discriminant and lower dimensional space. Given that such analysis uses short segments to estimate the scatter matrices, the projection could be improved by using longer segments (i.e., more information). Since a change of speaker is more likely to occur during periods of non-speech, we propose to use segments of speech produced by the boundaries estimated from a voice activity detection method based on Hidden Markov Models. Using datasets from the NIST Speaker Recognition Evaluations, we show that the estimated segments provide a better scatter matrices for the analysis. The results show a relative improvement of 21% in the Speaker Error Time on the Switchboard corpus used in the evaluations.\",\"PeriodicalId\":359348,\"journal\":{\"name\":\"2014 International Telecommunications Symposium (ITS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Telecommunications Symposium (ITS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITS.2014.6947969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Telecommunications Symposium (ITS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITS.2014.6947969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Fisher线性半判别分析用于说话人偏振化,将声学特征投影到判别的低维空间中。鉴于这种分析使用较短的片段来估计散点矩阵,可以通过使用较长的片段(即更多的信息)来改进投影。由于说话人的变化更有可能发生在非语音期间,我们建议使用基于隐马尔可夫模型的语音活动检测方法估计的边界产生的语音片段。使用来自NIST说话人识别评估的数据集,我们表明估计的片段为分析提供了更好的散点矩阵。结果表明,在评估中使用的总机语料库上的说话人错误时间相对提高了21%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An extension to Fisher Linear Semi-Discriminant analysis for Speaker Diarization
The Fisher Linear Semi-Discriminant Analysis is used in Speaker Diarization to project acoustic features into a discriminant and lower dimensional space. Given that such analysis uses short segments to estimate the scatter matrices, the projection could be improved by using longer segments (i.e., more information). Since a change of speaker is more likely to occur during periods of non-speech, we propose to use segments of speech produced by the boundaries estimated from a voice activity detection method based on Hidden Markov Models. Using datasets from the NIST Speaker Recognition Evaluations, we show that the estimated segments provide a better scatter matrices for the analysis. The results show a relative improvement of 21% in the Speaker Error Time on the Switchboard corpus used in the evaluations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信