基于形式化方法的数据生命周期建模建议

Madalina G. Ciobanu, F. Fasano, F. Martinelli, F. Mercaldo, A. Santone
{"title":"基于形式化方法的数据生命周期建模建议","authors":"Madalina G. Ciobanu, F. Fasano, F. Martinelli, F. Mercaldo, A. Santone","doi":"10.1145/3321705.3331003","DOIUrl":null,"url":null,"abstract":"Data usually evolve according to specific processes, with the consequent possibility to identify a profile of evolution: the values it may assume, the frequencies at which it changes, the temporal variation in relation to other data, or other constraints that are directly connected to the reference domain. A violation of these conditions could be the signal of different menaces that threat the system, as well as: attempts of a tampering or a cyber attack, a failure in the system operation, a bug in the applications which manage the life cycle of data. To detect such violations is not straightforward as processes could be unknown or hard to extract. In this paper we propose an approach to model the data life cycle by observing the data evolution in its life cycle. Thus, we represent users able to alter data through timed automata. Through model checking, the obtained profile of evolution can be used to detect anomalies in relational database, data warehouse and big data.","PeriodicalId":189657,"journal":{"name":"Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Data Life Cycle Modeling Proposal by Means of Formal Methods\",\"authors\":\"Madalina G. Ciobanu, F. Fasano, F. Martinelli, F. Mercaldo, A. Santone\",\"doi\":\"10.1145/3321705.3331003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data usually evolve according to specific processes, with the consequent possibility to identify a profile of evolution: the values it may assume, the frequencies at which it changes, the temporal variation in relation to other data, or other constraints that are directly connected to the reference domain. A violation of these conditions could be the signal of different menaces that threat the system, as well as: attempts of a tampering or a cyber attack, a failure in the system operation, a bug in the applications which manage the life cycle of data. To detect such violations is not straightforward as processes could be unknown or hard to extract. In this paper we propose an approach to model the data life cycle by observing the data evolution in its life cycle. Thus, we represent users able to alter data through timed automata. Through model checking, the obtained profile of evolution can be used to detect anomalies in relational database, data warehouse and big data.\",\"PeriodicalId\":189657,\"journal\":{\"name\":\"Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3321705.3331003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3321705.3331003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

数据通常根据特定过程演变,因此有可能确定演变概况:它可能假设的值,它变化的频率,与其他数据相关的时间变化,或与参考域直接相关的其他约束。违反这些条件可能是威胁系统的不同威胁的信号,以及:篡改或网络攻击的企图,系统操作的失败,管理数据生命周期的应用程序中的错误。检测这种违规行为并不简单,因为过程可能是未知的或难以提取的。本文提出了一种通过观察数据在生命周期中的演化来建立数据生命周期模型的方法。因此,我们表示能够通过时间自动机更改数据的用户。通过模型检验,得到的演化轮廓可用于关系数据库、数据仓库和大数据中的异常检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Data Life Cycle Modeling Proposal by Means of Formal Methods
Data usually evolve according to specific processes, with the consequent possibility to identify a profile of evolution: the values it may assume, the frequencies at which it changes, the temporal variation in relation to other data, or other constraints that are directly connected to the reference domain. A violation of these conditions could be the signal of different menaces that threat the system, as well as: attempts of a tampering or a cyber attack, a failure in the system operation, a bug in the applications which manage the life cycle of data. To detect such violations is not straightforward as processes could be unknown or hard to extract. In this paper we propose an approach to model the data life cycle by observing the data evolution in its life cycle. Thus, we represent users able to alter data through timed automata. Through model checking, the obtained profile of evolution can be used to detect anomalies in relational database, data warehouse and big data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信