含钙铝合金

T. Akopyan, N. Belov, E. Naumova
{"title":"含钙铝合金","authors":"T. Akopyan, N. Belov, E. Naumova","doi":"10.1201/9781351045636-140000264","DOIUrl":null,"url":null,"abstract":"The phase composition and microstructure of ternary alloys, Al–Ca–X (where X = (Silicon) Si, (Magnesium) Mg, (Zinc) Zn, (Copper) Cu, (Nickel) Ni, (Iron) Fe, (Manganese) Mn, and (Scandium) Sc), developed based on Ca-containing eutectics have been studied. In most systems, ternary compounds are detected. It is found that the structure of Ca-containing eutectics is much finer than that of Al–Si alloys. Such alloys have a good combination of technological properties during casting and deforming. Because of the high volume fraction of Ca-containing particles (up to 33 vol.%), they may be considered as promising “natural composites.” The strength properties of Al–Ca–X alloys may be significantly enhanced by adding Sc and Zr, forming L12 nanoparticles. Alloys of the system Al–Zn–Mg–Ca can reach hardnesses higher than 200 HB, which gives reason to expect good strength properties. With the example of the Al–9%Zn–3.5%Mg–3%Ca model experimental alloy based on the (Al) + (Al,Zn)4Ca eutectic, the possibility, in principle, of manufacturing rolled sheets has been demonstrated.","PeriodicalId":348912,"journal":{"name":"Encyclopedia of Aluminum and Its Alloys","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calcium-Containing Aluminum Alloys\",\"authors\":\"T. Akopyan, N. Belov, E. Naumova\",\"doi\":\"10.1201/9781351045636-140000264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The phase composition and microstructure of ternary alloys, Al–Ca–X (where X = (Silicon) Si, (Magnesium) Mg, (Zinc) Zn, (Copper) Cu, (Nickel) Ni, (Iron) Fe, (Manganese) Mn, and (Scandium) Sc), developed based on Ca-containing eutectics have been studied. In most systems, ternary compounds are detected. It is found that the structure of Ca-containing eutectics is much finer than that of Al–Si alloys. Such alloys have a good combination of technological properties during casting and deforming. Because of the high volume fraction of Ca-containing particles (up to 33 vol.%), they may be considered as promising “natural composites.” The strength properties of Al–Ca–X alloys may be significantly enhanced by adding Sc and Zr, forming L12 nanoparticles. Alloys of the system Al–Zn–Mg–Ca can reach hardnesses higher than 200 HB, which gives reason to expect good strength properties. With the example of the Al–9%Zn–3.5%Mg–3%Ca model experimental alloy based on the (Al) + (Al,Zn)4Ca eutectic, the possibility, in principle, of manufacturing rolled sheets has been demonstrated.\",\"PeriodicalId\":348912,\"journal\":{\"name\":\"Encyclopedia of Aluminum and Its Alloys\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Encyclopedia of Aluminum and Its Alloys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9781351045636-140000264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Encyclopedia of Aluminum and Its Alloys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781351045636-140000264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了基于含钙共晶制备的Al-Ca-X(其中X =(硅)Si,(镁)Mg,(锌)Zn,(铜)Cu,(镍)Ni,(铁)Fe,(锰)Mn和(钪)Sc)三元合金的相组成和显微组织。在大多数体系中,可以检测到三元化合物。结果表明,含ca共晶合金的组织要比Al-Si合金细得多。这种合金在铸造和变形过程中具有良好的工艺性能组合。由于含钙颗粒的高体积分数(高达33 vol.%),它们可能被认为是有前途的“天然复合材料”。添加Sc和Zr,形成L12纳米粒子,可以显著提高Al-Ca-X合金的强度性能。Al-Zn-Mg-Ca体系合金的硬度可达200 HB以上,具有良好的强度性能。以(Al) + (Al,Zn)4Ca共晶Al - 9%Zn - 3.5% mg - 3% ca模型实验合金为例,从理论上论证了制造轧制薄板的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calcium-Containing Aluminum Alloys
The phase composition and microstructure of ternary alloys, Al–Ca–X (where X = (Silicon) Si, (Magnesium) Mg, (Zinc) Zn, (Copper) Cu, (Nickel) Ni, (Iron) Fe, (Manganese) Mn, and (Scandium) Sc), developed based on Ca-containing eutectics have been studied. In most systems, ternary compounds are detected. It is found that the structure of Ca-containing eutectics is much finer than that of Al–Si alloys. Such alloys have a good combination of technological properties during casting and deforming. Because of the high volume fraction of Ca-containing particles (up to 33 vol.%), they may be considered as promising “natural composites.” The strength properties of Al–Ca–X alloys may be significantly enhanced by adding Sc and Zr, forming L12 nanoparticles. Alloys of the system Al–Zn–Mg–Ca can reach hardnesses higher than 200 HB, which gives reason to expect good strength properties. With the example of the Al–9%Zn–3.5%Mg–3%Ca model experimental alloy based on the (Al) + (Al,Zn)4Ca eutectic, the possibility, in principle, of manufacturing rolled sheets has been demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信