{"title":"基于直方图匹配的图像对共分割——将全局约束纳入mrf","authors":"C. Rother, T. Minka, A. Blake, V. Kolmogorov","doi":"10.1109/CVPR.2006.91","DOIUrl":null,"url":null,"abstract":"We introduce the term cosegmentation which denotes the task of segmenting simultaneously the common parts of an image pair. A generative model for cosegmentation is presented. Inference in the model leads to minimizing an energy with an MRF term encoding spatial coherency and a global constraint which attempts to match the appearance histograms of the common parts. This energy has not been proposed previously and its optimization is challenging and NP-hard. For this problem a novel optimization scheme which we call trust region graph cuts is presented. We demonstrate that this framework has the potential to improve a wide range of research: Object driven image retrieval, video tracking and segmentation, and interactive image editing. The power of the framework lies in its generality, the common part can be a rigid/non-rigid object (or scene), observed from different viewpoints or even similar objects of the same class.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"588","resultStr":"{\"title\":\"Cosegmentation of Image Pairs by Histogram Matching - Incorporating a Global Constraint into MRFs\",\"authors\":\"C. Rother, T. Minka, A. Blake, V. Kolmogorov\",\"doi\":\"10.1109/CVPR.2006.91\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the term cosegmentation which denotes the task of segmenting simultaneously the common parts of an image pair. A generative model for cosegmentation is presented. Inference in the model leads to minimizing an energy with an MRF term encoding spatial coherency and a global constraint which attempts to match the appearance histograms of the common parts. This energy has not been proposed previously and its optimization is challenging and NP-hard. For this problem a novel optimization scheme which we call trust region graph cuts is presented. We demonstrate that this framework has the potential to improve a wide range of research: Object driven image retrieval, video tracking and segmentation, and interactive image editing. The power of the framework lies in its generality, the common part can be a rigid/non-rigid object (or scene), observed from different viewpoints or even similar objects of the same class.\",\"PeriodicalId\":421737,\"journal\":{\"name\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"588\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2006.91\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cosegmentation of Image Pairs by Histogram Matching - Incorporating a Global Constraint into MRFs
We introduce the term cosegmentation which denotes the task of segmenting simultaneously the common parts of an image pair. A generative model for cosegmentation is presented. Inference in the model leads to minimizing an energy with an MRF term encoding spatial coherency and a global constraint which attempts to match the appearance histograms of the common parts. This energy has not been proposed previously and its optimization is challenging and NP-hard. For this problem a novel optimization scheme which we call trust region graph cuts is presented. We demonstrate that this framework has the potential to improve a wide range of research: Object driven image retrieval, video tracking and segmentation, and interactive image editing. The power of the framework lies in its generality, the common part can be a rigid/non-rigid object (or scene), observed from different viewpoints or even similar objects of the same class.