基于格式塔的机器人任务学习动作分割

M. Pardowitz, R. Haschke, Jochen J. Steil, H. Ritter
{"title":"基于格式塔的机器人任务学习动作分割","authors":"M. Pardowitz, R. Haschke, Jochen J. Steil, H. Ritter","doi":"10.1109/ICHR.2008.4756003","DOIUrl":null,"url":null,"abstract":"In programming by demonstration (PbD) systems, the problem of task segmentation and task decomposition has not been addressed with satisfactory attention. In this article we propose a method relying on psychological gestalt theories originally developed for visual perception and apply it to the domain of action segmentation. We propose a computational model for gestalt-based segmentation called competitive layer model (CLM). The CLM relies on features mutually supporting or inhibiting each other to form segments by competition. We analyze how gestalt laws for actions can be learned from human demonstrations and how they can be beneficial to the CLM segmentation method. We validate our approach with two reported experiments on action sequences and present the results obtained from those experiments.","PeriodicalId":402020,"journal":{"name":"Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Gestalt-based action segmentation for robot task learning\",\"authors\":\"M. Pardowitz, R. Haschke, Jochen J. Steil, H. Ritter\",\"doi\":\"10.1109/ICHR.2008.4756003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In programming by demonstration (PbD) systems, the problem of task segmentation and task decomposition has not been addressed with satisfactory attention. In this article we propose a method relying on psychological gestalt theories originally developed for visual perception and apply it to the domain of action segmentation. We propose a computational model for gestalt-based segmentation called competitive layer model (CLM). The CLM relies on features mutually supporting or inhibiting each other to form segments by competition. We analyze how gestalt laws for actions can be learned from human demonstrations and how they can be beneficial to the CLM segmentation method. We validate our approach with two reported experiments on action sequences and present the results obtained from those experiments.\",\"PeriodicalId\":402020,\"journal\":{\"name\":\"Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHR.2008.4756003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHR.2008.4756003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

在演示编程(PbD)系统中,任务分割和任务分解问题一直没有得到很好的解决。在本文中,我们提出了一种基于最初为视觉感知发展的心理格式塔理论的方法,并将其应用于动作分割领域。我们提出了一种基于格式塔的分割计算模型,称为竞争层模型(CLM)。CLM依赖于相互支持或相互抑制的特征,通过竞争形成细分。我们分析了如何从人类演示中学习动作的格式塔规律,以及它们如何有利于CLM分割方法。我们用两个关于动作序列的实验来验证我们的方法,并给出了从这些实验中得到的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gestalt-based action segmentation for robot task learning
In programming by demonstration (PbD) systems, the problem of task segmentation and task decomposition has not been addressed with satisfactory attention. In this article we propose a method relying on psychological gestalt theories originally developed for visual perception and apply it to the domain of action segmentation. We propose a computational model for gestalt-based segmentation called competitive layer model (CLM). The CLM relies on features mutually supporting or inhibiting each other to form segments by competition. We analyze how gestalt laws for actions can be learned from human demonstrations and how they can be beneficial to the CLM segmentation method. We validate our approach with two reported experiments on action sequences and present the results obtained from those experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信