生物质和公共垃圾气化模拟的人工智能方法

P. Praks, D. Brkić, J. Najser, Tomáš Najser, R. Praksová, Z. Stajic
{"title":"生物质和公共垃圾气化模拟的人工智能方法","authors":"P. Praks, D. Brkić, J. Najser, Tomáš Najser, R. Praksová, Z. Stajic","doi":"10.1109/ICCC51557.2021.9454641","DOIUrl":null,"url":null,"abstract":"Artificial intelligence (AI) methods can simulate accurately outcomes of gasification processes based on real data sets. Quality and composition of gas obtained from solid fuels depend on the temperature of the gasifying agent (air or steam) and the composition of used solid waste (biomass, industrial waste or combustibles from municipal solid waste, such as plastics, textile, wood, paper, tires, etc.). To simulate the gasification processes, a symbolic regression software AI Feynman is tested. Finally, the results of symbolic regression are compared with measured data. The results indicate that symbolic regression of AI Feynman is useful for modelling of biomass gasification technologies from measured data.","PeriodicalId":339049,"journal":{"name":"2021 22nd International Carpathian Control Conference (ICCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Methods of Artificial Intelligence for Simulation of Gasification of Biomass and Communal Waste\",\"authors\":\"P. Praks, D. Brkić, J. Najser, Tomáš Najser, R. Praksová, Z. Stajic\",\"doi\":\"10.1109/ICCC51557.2021.9454641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence (AI) methods can simulate accurately outcomes of gasification processes based on real data sets. Quality and composition of gas obtained from solid fuels depend on the temperature of the gasifying agent (air or steam) and the composition of used solid waste (biomass, industrial waste or combustibles from municipal solid waste, such as plastics, textile, wood, paper, tires, etc.). To simulate the gasification processes, a symbolic regression software AI Feynman is tested. Finally, the results of symbolic regression are compared with measured data. The results indicate that symbolic regression of AI Feynman is useful for modelling of biomass gasification technologies from measured data.\",\"PeriodicalId\":339049,\"journal\":{\"name\":\"2021 22nd International Carpathian Control Conference (ICCC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 22nd International Carpathian Control Conference (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCC51557.2021.9454641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 22nd International Carpathian Control Conference (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC51557.2021.9454641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人工智能(AI)方法可以基于真实数据集准确模拟气化过程的结果。从固体燃料中获得的气体的质量和组成取决于气化剂(空气或蒸汽)的温度和使用过的固体废物(生物质、工业废物或城市固体废物中的可燃物,如塑料、纺织品、木材、纸张、轮胎等)的组成。为了模拟气化过程,对符号回归软件AI Feynman进行了测试。最后,将符号回归结果与实测数据进行了比较。结果表明,人工智能费曼符号回归对生物质气化技术的建模是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Methods of Artificial Intelligence for Simulation of Gasification of Biomass and Communal Waste
Artificial intelligence (AI) methods can simulate accurately outcomes of gasification processes based on real data sets. Quality and composition of gas obtained from solid fuels depend on the temperature of the gasifying agent (air or steam) and the composition of used solid waste (biomass, industrial waste or combustibles from municipal solid waste, such as plastics, textile, wood, paper, tires, etc.). To simulate the gasification processes, a symbolic regression software AI Feynman is tested. Finally, the results of symbolic regression are compared with measured data. The results indicate that symbolic regression of AI Feynman is useful for modelling of biomass gasification technologies from measured data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信