用离散余弦变换卷积提高卷积神经网络的性能

Izumi Ito
{"title":"用离散余弦变换卷积提高卷积神经网络的性能","authors":"Izumi Ito","doi":"10.23919/eusipco55093.2022.9909831","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNNs) are widely used in many areas. They feature convolutional layers that focus on spatial local node connections rather than full node connections. This makes networks much more efficient for spatial information. The convolution is a mathematical operation on two functions and can be calculated using the discrete Fourier transform (DFT). Due to the close relation to the DFT, the discrete cosine transforms (DCTs) can be used for the calculation. In this paper, we focus on the convolution using DCTs for improvement of the performance of CNNs. The periodicity and symmetry inherent in the DCTs generate larger output feature maps. The proposed method in simple CNNs is demonstrated and the efficacy of the proposed method is testified using CIFAR-10 dataset.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convolution Using Discrete Cosine Transforms for Improving Performance of Convolutional Neural Networks\",\"authors\":\"Izumi Ito\",\"doi\":\"10.23919/eusipco55093.2022.9909831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional neural networks (CNNs) are widely used in many areas. They feature convolutional layers that focus on spatial local node connections rather than full node connections. This makes networks much more efficient for spatial information. The convolution is a mathematical operation on two functions and can be calculated using the discrete Fourier transform (DFT). Due to the close relation to the DFT, the discrete cosine transforms (DCTs) can be used for the calculation. In this paper, we focus on the convolution using DCTs for improvement of the performance of CNNs. The periodicity and symmetry inherent in the DCTs generate larger output feature maps. The proposed method in simple CNNs is demonstrated and the efficacy of the proposed method is testified using CIFAR-10 dataset.\",\"PeriodicalId\":231263,\"journal\":{\"name\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eusipco55093.2022.9909831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络(cnn)在许多领域得到了广泛的应用。它们的特点是卷积层专注于空间局部节点连接,而不是全节点连接。这使得网络在空间信息方面更加高效。卷积是对两个函数的数学运算,可以用离散傅里叶变换(DFT)来计算。由于与DFT的密切关系,离散余弦变换(dct)可以用于计算。在本文中,我们重点研究了使用dct的卷积来提高cnn的性能。dct固有的周期性和对称性产生更大的输出特征映射。利用CIFAR-10数据集验证了该方法在简单cnn上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convolution Using Discrete Cosine Transforms for Improving Performance of Convolutional Neural Networks
Convolutional neural networks (CNNs) are widely used in many areas. They feature convolutional layers that focus on spatial local node connections rather than full node connections. This makes networks much more efficient for spatial information. The convolution is a mathematical operation on two functions and can be calculated using the discrete Fourier transform (DFT). Due to the close relation to the DFT, the discrete cosine transforms (DCTs) can be used for the calculation. In this paper, we focus on the convolution using DCTs for improvement of the performance of CNNs. The periodicity and symmetry inherent in the DCTs generate larger output feature maps. The proposed method in simple CNNs is demonstrated and the efficacy of the proposed method is testified using CIFAR-10 dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信