Richard Yarnell, Daniel Brignac, Yanjie Fu, R. Demara
{"title":"利用数据增强技术增强稀疏数据集的学习","authors":"Richard Yarnell, Daniel Brignac, Yanjie Fu, R. Demara","doi":"10.1109/ai4i54798.2022.00025","DOIUrl":null,"url":null,"abstract":"Neural network-based object detection has many important applications but requires a vast amount of training data. In applications where training data may be scarce, data augmentation techniques can be used to expand the training set. This paper explores the performance of such techniques on You Only Look Once Version 5 (YOLOv5).","PeriodicalId":345427,"journal":{"name":"2022 5th International Conference on Artificial Intelligence for Industries (AI4I)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilization of Data Augmentation Techniques to Enhance Learning with Sparse Datasets\",\"authors\":\"Richard Yarnell, Daniel Brignac, Yanjie Fu, R. Demara\",\"doi\":\"10.1109/ai4i54798.2022.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural network-based object detection has many important applications but requires a vast amount of training data. In applications where training data may be scarce, data augmentation techniques can be used to expand the training set. This paper explores the performance of such techniques on You Only Look Once Version 5 (YOLOv5).\",\"PeriodicalId\":345427,\"journal\":{\"name\":\"2022 5th International Conference on Artificial Intelligence for Industries (AI4I)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th International Conference on Artificial Intelligence for Industries (AI4I)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ai4i54798.2022.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Artificial Intelligence for Industries (AI4I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ai4i54798.2022.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
基于神经网络的目标检测有许多重要的应用,但需要大量的训练数据。在训练数据稀缺的应用中,可以使用数据增强技术来扩展训练集。本文探讨了这些技术在You Only Look Once Version 5 (YOLOv5)上的性能。
Utilization of Data Augmentation Techniques to Enhance Learning with Sparse Datasets
Neural network-based object detection has many important applications but requires a vast amount of training data. In applications where training data may be scarce, data augmentation techniques can be used to expand the training set. This paper explores the performance of such techniques on You Only Look Once Version 5 (YOLOv5).